

Dushan Boroyevich, Christina DiMarino

Congresso Brasileito de Electrônica de Potência Southern Power Electronics Conference Fortaleza, Brazil November 29, 2015

Outline

- 1. Introduction
- 2. High Frequency and High Efficiency
 - Comparison with Si
 - Characterization of 1.2 kV SiC discrete transistors
- 3. High Temperature
 - For power density in normal temperature ambient
 - For operation in high-temperature ambient
- 4. Medium Voltage
- 5. High Voltage
- 6. Conclusions
- 7. References

November 29, 2015

Tutorial: Is SiC a Game Changer?

Wide bandgap (WBG) semiconductors are capable of achieving these goals.

Power Electronics SiC Device Manufacturing

Cost Reduction of Wolfspeed's SiC Power Devices

SiC Devices

	Device	Advantages	Disadvantages	Voltage Rating
	DMOSFET	Scalable	MOS Interface	0.4 kV – 15 kV
Unipolar	Trench MOSFET	High $V_{\rm TH},$ Low $\rm R_{\rm ON}$	High Electric Field	0.6 kV – 1.2 kV
	Normally-On JFET	High Temp.	Normally-On	1.2 kV – 6.5 kV
	Normally-Off JFET	Normally-Off	High R _{ON}	1.2 kV – 6.5 kV
F	BJT	No Gate Oxide	Current Driven	1.2 kV – 10 kV
pola	IGBT	High Voltage	Reliability	15 kV – 27 kV
Bip	GTO	Low Conduction Loss	Difficult Control	> 8 kV
	Schottky Diode	No Reverse Recovery	High Leakage	0.1 kV – 8 kV
	JBS Diode	Low Leakage	High Forward Voltage	0.65 kV – 10 kV
	PiN Diode	Forward Voltage	Degradation	10 kV

Tutorial: Is SiC a Game Changer?

Outline

1. Introduction

2. High Frequency and High Efficiency

- Comparison with Si
- Characterization of 1.2 kV SiC discrete transistors
- 3. High Temperature
 - For power density in normal temperature ambient
 - For operation in high-temperature ambient
- 4. Medium Voltage
- 5. High Voltage
- 6. Conclusions

Tutorial: Is SiC a Game Changer?

db-8

Wide-Bandgap Silicon Carbide (SiC) Power Semiconductors Devices

	Device	Advantages	Disadvantages	Voltage Rating
	DMOSFET	Scalable	MOS Interface	0.4 kV – 15 kV
Unipolar	Trench MOSFET	High $V_{\rm TH},$ Low $\rm R_{\rm ON}$	High Electric Field	0.6 kV – 1.2 kV
	Normally-On JFET	High Temp.	Normally-On	1.2 kV – 6.5 kV
	Normally-Off JFET	Normally-Off	High R _{ON}	1.2 kV – 6.5 kV
	BJT	No Gate Oxide	Current Driven	1.2 kV – 10 kV
pola	IGBT	High Voltage	Reliability	15 kV – 27 kV
Bip	GTO	Low Conduction Loss	Difficult Control	> 8 kV
	Schottky Diode	No Reverse Recovery	High Leakage	0.1 kV – 8 kV
	JBS Diode	Low Leakage	High Forward Voltage	0.65 kV – 10 kV
	PiN Diode	Forward Voltage	Degradation	10 kV

SiC Devices

Tutorial: Is SiC a Game Changer?

600 V Si CoolMOS vs. 1200 V SiC MOSFET: Static Characteristics

600 V Si CoolMOS vs. 1200 V SiC MOSFET : Phase-Legs in a High-Frequency Converter

Module features

- 1200 V, 20 A SiC MOSFET phase-leg module
- · Integrated peripheral functions
- High-speed gate drive (up to 500 kHz)
- Improved power stage layout (40% ↓ in stray L than conventional design)
- Compatible with Si MOSFET as well
 600 V, 46 A Si CoolMOS version
- SiC Phase Leg

Gate drive

Integrated functions

600 V Si CoolMOS vs. 1200 V SiC MOSFET: High-Frequency Converter Comparison

- Isolated DC-DC converter, bidirectional power flow
 - Input & output DC bus:
 300 V for Si CoolMOS, 600 V for SiC MOSFETs
 - Same output power: 5 kW full-load
 - Switching frequency: 100 kHz, 250 kHz, 500 kHz
 - Device loss distribution calculated based on loss-less DAB model

db-14

(Z. Chen, 2010) Tutorial: Is SiC a Game Changer?

Brief Summary: SiC MOSFET Under High-Frequency Operation

• Si CoolMOS vs. SiC MOSFETs

	Si CoolMOS	SIC MOSFET	
	(600 V, 46 A)	(1200 V, 20 A)	
V _{GS}	0 –10 V	-5 – 20 V	
R _{DS(on)}	Larger; Increases by > 200% at 125 °C	Smaller; Increases by < 200% at 200 °C	
Junction caps	4x higher C _{ISS} ; Slightly higher C _{RSS} , C _{OSS}	1/4x lower C _{ISS} ; Slightly lower C _{RSS} , C _{OSS}	
9 _{fs}	Much higher	Much lower	
E _{sw}	Lower	Higher (when_driving with +15 V/-2.5 V)	
	What at	pout	

SiC MOSFETs?

November 29, 2015

(Z. Chen, 2010) Tutorial: Is SiC a Game Changer?

Industry's first 900 V SiC MOSFET vs. 900 V Si CoolMOS.

Key Parameters	Cree 900V C3M0065090J	CoolMOS™ 900V	
RDS(ON) @ 25C	65 mΩ	280 mΩ	
RDS(ON) @ 150C	90 mΩ	760 mΩ	
Peak Current	90 A	34 A	
Qg	30 nC	94 nC	
Ciss	660 pF	2400 pF	
Qrr	131 nC	11,000 nC	
Trr	16 ns	510 ns	
Wolfspeed. November 29, 2015	http://apps.richardsonrfpd.com/Mktg/Cree_900V_SiC-MOSFET.html © 2015 Cree, Inc. All rights reserved Tutorial: Is SiC a Game Changer?	db-17	

Industry's first 900 V SiC MOSFET vs. 650 V Si CoolMOS.

	220 W LED drive Si SJ MOS	using SFETs	
	650 V CoolMOS (2-Stage)	900 V SiC MOSFET (Single Stage)	
Input voltage Range	120-277V AC	120-277V AC	
Output Voltage Range	150-210V DC	150-210V DC	
Max Output Current	1.45 A	1.45 A	using Wolfspeed C3M
Peak Efficiency	93.5 %	94.4 %	→ 1 % higher efficiency SiC MOSFETs
Input THD	< 20%	< 20%	
Output Current Ripple	>0.95	>0.95	1
Output Current Ripple	±5 %	±10 %	
Size	220 x 52 x 30 mm	140 x 50 x 30 mm	→ 40 % size reduction
Weight	2.7 lbs / 1.3 kg	1.1 lbs / 0.5 kg	→ 60 % weight reduction
	1	0.85	> 15 % BOM cost reduction

Brief Summary: SiC MOSFET Under High-Frequency Operation

• Si CoolMOS vs. SiC MOSFETs

	Si CoolMOS (600 V, 46 A)	SIC MOSFET (1200 V, 20 A)
V _{GS}	0 –10 V	-5 – 20 V
R _{DS(on)}	Larger; Increases by > 200% at 125 °C	Smaller; Increases by < 200% at 200 °C
Junction caps	4x higher C _{ISS} ; Slightly higher C _{RSS} , C _{OSS}	1/4x lower C _{ISS} ; Slightly lower C _{RSS} , C _{OSS}
9 _{fs}	Much higher	Much lower
Esw	Lower	Higher (when driving with +15 V/-2.5 V)

Suitable applications for SiC MOSFETs

- High DC bus voltage (> 400 V)
- High power
- High junction temperature
- 10 kHz < frequency < 100 kHz</p>
- To replace state-of-the-art Si IGBTs
- Increase switching frequency
- Reduce conduction/switching losses

(Z. Chen, 2010) Tutorial: Is SiC a Game Changer?

SiC MOSFET 6-Pack vs. Si IGBT (FS50R12KT4)

- Unlike Si IGBTs, SiC MOSFETs do not have a tail current. This results in significantly *lower* turn-on switching losses.
- SiC MOSFETs enable *increased* switching frequency, which *reduces* the size, weight, and BOM cost of power electronic systems.

© 2015 Cree, Inc. All rights reserved Tutorial: Is SiC a Game Changer?

SiC MOSFETs reduce the converter size and weight, and lower system costs.

SiC MOSFET switching losses are < 1/10th that of Si IGBT.

SiC MOSFETs offer symmetric reverse conduction for synchronous rectification.

- The body diode of the SiC MOSFET is ideal for synchronous rectification.
- Using the body diode **eliminates** the need for an external **anti-parallel diode**, which increases the floor space thereby allowing for **higher-current modules**.

November 29, 2015

© 2015 General Electric Company - All rights reserved Tutorial: Is SiC a Game Changer?

These faults were observed to degrade high-voltage SiC MOSFETs during body diode stressing.

There were also concerns about the gate oxide reliability, especially under high temperature conditions.

It has been shown that the gate oxide and body diode of newer-generation SiC MOSFETs are stable.

Body diode reliability can be achieved with improved substrate, epitaxy, and device fabrication processes.

1 % higher CEC efficiency is achieved when using SiC MOSFETs (without JBS) instead of Si IGBTs.

1 MW, 2L PV inverter switching at 8 kHz with 1.7 kV SiC MOSFET modules.

SiC MOSFETs reduce the converter size and weight, and lower system costs.

- Not necessary for SiC to be at Si cost
- Focus on high power, high volume apps where SiC offers attractive value proposition

© 2015 General Electric Company - All rights reserved Tutorial: Is SiC a Game Changer?

A 75 kW aviation converter with 98.5 % efficiency at 20 kHz is realized using SiC MOSFETs.

99 % - Efficient Rectifiers for Aerospace Applications

99 % - Efficient 3 kW SiC Vienna Rectifier for Aerospace

- · All switches implemented with SiC devices
- Total measured loss is 22.4 W (99.26% efficiency at 3 kW output power without active cooling)
- Device case/surface temperatures without active cooling at roomtemperature ambient (22 °C):
 - SIC MOSFET: 53 °C
- ✤ Boost inductor: 35 °C
- SiC Schottky Diode: 74 °C
- Coupled inductor: 37 °C

COBEL

db-34

Tutorial: Is SiC a Game Changer?

SiC has shown numerous benefits over Si.

	Device	Advantages	Disadvantages	Voltage Rating
	DMOSFET	Scalable	MOS Interface	0.4 kV – 15 kV
	Trench MOSFET	High $V_{\rm TH},$ Low $\rm R_{\rm ON}$	High Electric Field	0.6 kV – 1.2 kV
Unipolar	Normally-On JFET	High Temp.	Normally-On	1.2 kV – 6.5 kV
	Normally-Off JFET	Normally-Off	High R _{ON}	1.2 kV – 6.5 kV
۔ ۔	BJT	No Gate Oxide	Current Driven	1.2 kV – 10 kV
oola	IGBT	High Voltage	Reliability	15 kV – 27 kV
Bi	GTO	Low Conduction Loss	Difficult Control	> 8 kV
	Schottky Diode	No Reverse Recovery	High Leakage	0.1 kV – 8 kV
	JBS Diode	Low Leakage	High Forward Voltage	0.65 kV – 10 kV
	PiN Diode	Forward Voltage	Degradation	10 kV
CPL	November 29, 2015	Tutorial: Is SiC a Ga	ame Changer?	db-36

SiC Devices

SiC Device Comparative Characterization

	Device	Continuous Current Rating*	T _{MAX} *	Normalized Die Area**
CREE	SiC MOSFET (C2M0080120D)	20 A (100 °C)	150 °C	1.00
	SiC MOSFET (SCH2080KE)	22 A (100 °C)	150 °C	1.21
36)	SiC MOSFET (GE12N20L)	22.5 A (100 °C)	200 °C	0.97
	SiC BJT (FSICBH057A120)	15 A	175 °C	0.64
	SiC SJT (GA10JT12)	6 A (25 °C)	175 °C	0.33
Infineon	N-On SiC JFET (IJW120R100T1)	10 A (≤ 150 °C)	175 °C	1.29
SemiSouth	N-Off SiC JFET (SJEP120R100)	17 A (100 ℃)	150 °C	0.43
	*Ratings from the device of **Normalized to the die and	datasheet. ea of the Cree C2M0080120E (C. DiMarino, 2014)	SIC MOSFET.	
CPES Noven	nber 29, 2015	Tutorial: Is SiC a Game Cha	anger?	db-37 🚽

Modeling of Switching Behavior

Switching	of SiC	Normally	/-On	JFET
at Dif	ferent	Tempera	tures	

Minimal modifications are made to the driving circuits to allow for fair comparisons.

Driving Method for the SiC MOSFETs

SiC Switch Comparative Characterization: Switching Energy vs. Load Current

temperature.				
For ∆T of	175 °C (from	25 °C to 200 °	C)	
Device	ΔE_{ON}	$\Delta \mathbf{E}_{\mathbf{OFF}}$	$\Delta \mathbf{E}_{TOT}$	
Cree MOSFET	↓	1	↓ 6 %	
ROHM MOSFET	↓	1	↓ 8 %	
GE MOSFET	↓	1	constant	
BJT	↓	↓	↓ 6 %	
SJT	↓		v 14 %	
N-Off JFET	1	constant	11 %	
N-On JFET	constant	4	↓ 11 %	

The switching loss of SiC transistors is independent of

Tutorial: Is SiC a Game Changer?

SiC Devices

	Device	Advantages	Disadvantages	Voltage Rating
	DMOSFET	Scalable	MOS Interface	0.4 kV – 15 kV
Unipolar	Trench MOSFET	High $V_{\rm TH},$ Low $\rm R_{\rm ON}$	High Electric Field	0.6 kV – 1.2 kV
	Normally-On JFET	High Temp.	Normally-On	1.2 kV – 6.5 kV
	Normally-Off JFET	Normally-Off	High R _{ON}	1.2 kV – 6.5 kV
L	BJT	No Gate Oxide	Current Driven	1.2 kV – 10 kV
pola	IGBT	High Voltage	Reliability	15 kV – 22 kV
Bip	GTO	Low Conduction Loss	Difficult Control	> 8 kV
	Schottky Diode	No Reverse Recovery	High Leakage	0.1 kV – 8 kV
	JBS Diode	Low Leakage	High Forward Voltage	0.65 kV – 10 kV
	PiN Diode	Forward Voltage	Degradation	10 kV

Tutorial: Is SiC a Game Changer?

Silicon Carbide Junction Transistor (SJT)

1700 V SJT vs. Si IGBT: Conduction Loss

Why does the SiC BJT behave like a MOSFET?

SJT Repetitive Short-Circuit at 800 V

	Device	Advantages	Disadvantages	Voltage Rating
	DMOSFET	Scalable	MOS Interface	1.2 kV – 15 kV
iipolar	Trench MOSFET	High V _{TH} , Low R _{ON}	High Electric Field	0.6 kV – 1.2 kV
Ľ	Normally-On JFET	High Temp.	Normally-On	1.2 kV – 6.5 kV
	Normally-Off JFET	Normally-Off	High R _{ON}	1.2 kV – 6.5 kV
	BJT	No Gate Oxide	Current Driven	1.2 kV – 10 kV
olar	IGBT	High Voltage	Reliability	15 kV – 27 kV
Bip	GTO	Low Conduction Loss	Difficult Control	> 8 kV
	Schottky Diode	No Reverse Recovery	High Leakage	0.1 kV – 8 kV
	JBS Diode	Low Leakage	High Forward Voltage	0.65 kV – 10 kV
	PiN Diode	Forward Voltage	Degradation	10 kV
600				

SiC Devices

db-54

Advantages of SiC Trench MOSFETs

Tutorial: Is SiC a Game Changer?

CPES November 29, 2015

The 1.2 kV double-trench SiC MOSFET shows promising advantages over planar SiC MOSFETs.

The double-trench structure reduces the electric field at the gate.

I-V Characteristics of 6 x 6 mm² VMOSFET

Low-Inductance, 2-in-1 Module for 1200 V VMOSFET

Layout Improvement Considerations

High-Frequency Hybrid Phase-Leg Module Design

Fabrication of Hybrid Phase-Leg Module

Switching Performance with $R_G = 0 \Omega$

Switching Energies vs. Load Current

Measured at 25 °C

(Z. Chen, 2012) Tutorial: Is SiC a Game Changer?

High-Speed, High-Efficiency SiC MOSFET Half-Bridge 1.2 kV, 90 A Power Module

High-Speed, High-Efficiency SiC MOSFET Half-Bridge 1.2 kV, 90 A Power Module

Outline

- 1. Introduction
- 2. High Frequency and High Efficiency
 - Comparison with Si
 - Characterization of 1.2 kV SiC discrete transistors

3. High Temperature

- For power density in normal temperature ambient

Tutorial: Is SiC a Game Changer?

db-68

- For operation in high-temperature ambient
- 4. Medium Voltage
- 5. High Voltage
- 6. Conclusions
- 7. References November 29, 2015

Demands for High-Power-Density Converters More Electric Airplanes: <u>20~30 %</u> Main Size Contributors for Motor Drive (R. Lai, 2008) Limited space and more Front End Inverter onverte power converters Output Input DC М Ľ ъť Filter Filter Link Heat Sink Size & weight restrictions Semiconductor switches of high voltage, high frequency, and high temperature -200 °C 150 COBEP CPES November 29, 2015 db-69 Tutorial: Is SiC a Game Changer?

Unipolar	Device	Advantages	Disadvantages	Voltage Rating
	DMOSFET	Scalable	MOS Interface	0.4 kV – 15 kV
	Trench MOSFET	High $V_{\rm TH},$ Low $R_{\rm ON}$	High Electric Field	0.6 kV – 1.2 kV
	Normally-On JFET	High Temp.	Normally-On	1.2 kV – 6.5 kV
	Normally-Off JFET	Normally-Off	High R _{ON}	1.2 kV – 6.5 kV
Bipolar	BJT	No Gate Oxide	Current Driven	1.2 kV – 10 kV
	IGBT	High Voltage	Reliability	15 kV – 27 kV
	GTO	Low Conduction Loss	Difficult Control	> 8 kV
	Schottky Diode	No Reverse Recovery	High Leakage	0.1 kV – 8 kV
	JBS Diode	Low Leakage	High Forward Voltage	0.65 kV – 10 kV
	PiN Diode	Forward Voltage	Degradation	10 kV

SiC Devices

Tutorial: Is SiC a Game Changer?

High-Temperature Wire-Bond Power Module Design

High-Power-Density, 10 kW Motor Drive with High-Temperature Modules

Improved SiC JFET Power Module

Reliability of DBC substrate in thermal cycling between -55°C and 200°C

Reliability of Direct-Bond-Copper (DBC) Substrate

Tutorial: Is SiC a Game Changer?

Reliability of DBC substrate in thermal cycling between -55°C and 200°C

With stepped-edge and Nysil sealant fails in ~ 1200 cycles

0 CPES	November 29, 2015	Tutorial: Is SiC a Game Changer?	db-18d	COBEP	
-----------	-------------------	----------------------------------	--------	-------	--

Reliability of Direct-Bond-Copper (DBC) Substrate

Reliability of DBC substrate in thermal cycling between -55°C and 200°C

High-Temperature Single-Switch Three-Phase Rectifier

Targets:

- > Junction temperature up to 250 °C.
- > Ambient temperature over 15 0°C.

Component Selection

- Power devices
 - 1200 V, 10 A SiC JFET from SiCed
 - 600 V, 10 A SiC Schottky diode from Cree
- Controller devices
 - SOI discrete devices from Honeywell, Cissoid
- Passive components
 - Nanocrystalline core and High temperature wire
 - Film resistor from Caddock, Vishey,...
 - Ceramic capacitor from Novacap, Kemet, Eurofarad,...
- PCB
 - Polyimide pcb from 4PCB, Standard Printed Circuits Inc, ...

Tutorial: Is SiC a Game Changer?

Modified Hybrid Packaging Structure

Epo-tek 600 Nusil R-2188 Lead frame Bond wires Kapton 2 spacer DBC Nano Ag SIC JFET SiC Diode substrate **Junction Temperature \$FLIR** +1 36.3 thermal coupler 164 D5 Case Temperature thermal coupler Trefl=25 Tatm=25 Dst=0.2 FOV 37 Multiple chip Hybrid Power Module 6/23/11 7:05:19 PM +0 - +250 e=0.96 °C Power module thermal test db-87 November 29, 2015 Tutorial: Is SiC a Game Changer?

High-Temperature Gate Drivers

High-Temperature Gate Drivers (Cont'd)

Integration of High-Temperature Three-Phase Rectifier

Converter Thermal Testing

Unipolar	Device	Advantages	Disadvantages	Voltage Rating
	DMOSFET	Scalable	MOS Interface	0.4 kV – 15 kV
	Trench MOSFET	High $V_{\rm TH},$ Low $\rm R_{\rm ON}$	High Electric Field	0.6 kV – 1.2 kV
	Normally-On JFET	High Temp.	Normally-On	1.2 kV – 6.5 kV
	Normally-Off JFET	Normally-Off	High R _{ON}	1.2 kV – 6.5 kV
Bipolar	BJT	No Gate Oxide	Current Driven	1.2 kV – 10 kV
	IGBT	High Voltage	Reliability	15 kV – 27 kV
	GTO	Low Conduction Loss	Difficult Control	> 8 kV
	Schottky Diode	No Reverse Recovery	High Leakage	0.1 kV – 8 kV
	JBS Diode	Low Leakage	High Forward Voltage	0.65 kV – 10 kV
	PiN Diode	Forward Voltage	Degradation	10 kV

SiC Devices

Tutorial: Is SiC a Game Changer?

High-Temperature 3-Phase AC-DC Converter for Embedded Generators in MEA

High-Temperature Packaging Materials Used

1200 V, 60 A SiC Phase-Leg Module Design

200 °C, 1200 V, 120 A SiC Phase-Leg Module: Module Design

High-Temperature 3-Phase AC-DC Converter: Converter Layout

High-Temperature 3-Phase AC-DC Converter: Converter Double-Pulse Tests at 200 °C

SiC DMOSFETs Qualified at 200 °C

600 V, 600 A, T_J= 200 °C SiC Trench MOSFET Module for 3-Phase Motor Drive

Outline

- 1. Introduction
- 2. High Frequency and High Efficiency
 - Comparison with Si
 - Characterization of 1.2 kV SiC discrete transistors
- 3. High Temperature
 - For power density in normal temperature ambient
 - For operation in high-temperature ambient

4. Medium Voltage

- 5. High Voltage
- 6. Conclusions
- 7. References

PES November 29, 2015

Tutorial: Is SiC a Game Changer?

SiC Devices

Tutorial: Is SiC a Game Changer?

db-104

Ex: 35 MW 3-phase AC to DC Power Converter for Bidirectional MV Motor Drive or Grid-Interface

PEBB 1000 Design and Applications

SiC MOSFET Candidates

	GE*		Cree	
Part No.	Not Commercial		CAS300M17BM2 (Commercial)	
Voltage Rating 1500		1500 V	1700 V	
Current Rating	400 A @ T _j =25 °C		325 A @ Tj=25 °C, 225 A @ Tj=90 °C,	
R _{DS(on)}	8.3 m Ω @ V_{GS}=20 V, I_{DS}=240 A		8.0 m Ω @ V_{GS}=20 V, I_{DS}=225 A	
E _{ON}	11.1 mJ	@ V _{DS} =800 V, V _{GS} =-5/+20 V,	9.56 mJ	@ V _{DS} =800 V, V _{GS} =-5/+20 V,
E _{OFF}	9.3 mJ	I _{DS} =300 A, R _{G_ex} =1.9 Ω, T _j =25°C	9.42 mJ	I _{DS} =300 A, R _{G_ex} =1.9 Ω, T _j =25°C
T _{j_max}	175 °C		150 °C	
C _{oss}	2.151 nF (800 V)		3.954 nF (800 V)	

*1st generation

Tutorial: Is SiC a Game Changer?

Device Comparison: Turn off Energy

Device Comparison: Overvoltage and Overcurrent

Characteristics of Discrete 3.3 kV SiC Devices

3.3 kV, 400 A Full SiC 2-in-1 Module

3.3 kV SiC MOSFETs have *10-15x lower* switching losses than 3.3 kV Si IGBTs.

The World's First All-SiC Traction Inverter

Outline

- 1. Introduction
- 2. High Frequency and High Efficiency
 - Comparison with Si
 - Characterization of 1.2 kV SiC discrete transistors
- 3. High Temperature
 - For power density in normal temperature ambient
 - For operation in high-temperature ambient
- 4. Medium Voltage

5. High Voltage

- 6. Conclusions
- 7. References

CPES November 29, 2015

Tutorial: Is SiC a Game Changer?

SiC Devices

Tutorial: Is SiC a Game Changer?

db-116

Impedance Measurement Unit using 10 kV SiC MOSFETs for Medium Voltage (4.16 kV) Medium Power (2 MW) Systems

SiC H-Bridge

D1	Parameter	Full Module
	Voltage Rating	10 kV
	Current Rating	120 A
Si Schottky	No. of SiC MOSFETs	12
	No. of SiC JBS Diodes	6
S2 S2	V _{DS,ON}	5 V at 100 A

Tutorial: Is SiC a Game Changer?

High-Voltage Double-Pulse Test Setup

Experimental Double-Pulse Test: 4.7 kV, 100 A

Experimental Double-Pulse Test: 4.7 kV, 100 A

Saber Simulation: Double-Pulse Test Schematic

Experimental and Simulation Comparison

Experimental and Simulation Comparison

PEBB Buck Testing

- **1. High voltage:** V_{in} = **4.7 kV**, I_{out} = 4 A, V_{out} = 470 V, f_{sw} = 10 kHz, D = 10 %
- **2. High current:** V_{in} = 670 V, I_{out} = **100 A**, V_{out} = 320 V, f_{sw} = 10 kHz, D= 50 %

PEBB Buck Test at Full Voltage

First-ever impedance measurement at 2.8 kV.

Significant Miller effect and common-mode currents limited the operation of the converter.

High Power Electronics (HPE) program – DARPA/ONR Solid-State Power Substation (SSPS)

Single-phase SSPS at Navy test lab

- ✓ Demonstrated at 1 MVA, 13.8 kV/265 V
- ✓ Efficiency at full load > 97%
- ✓ 1/3rd weight of conventional transformer
- ✓ AC input current/ output voltage THD < 5%

Input voltage across individual bridge Current sharing at bridge outputs

20 kHz transformer primary (HV side) waveforms

Tutorial: Is SiC a Game Changer?

Significant common-mode current could be flowing through the baseplate parasitic capacitance.

10 kV SiC MOSFETs in 30 kW Boost Converter

3rd Generation 10 kV SiC MOSFET

3D finite element analysis tools can be used to optimize the high voltage module design.

Stacking substrates can reduce the peak electric field at the triple point.

SiC Devices

Unipolar	Device	Advantages	Disadvantages	Voltage Rating
	DMOSFET	Scalable	MOS Interface	0.4 kV – 15 kV
	Trench MOSFET	High $V_{\rm TH},$ Low $\rm R_{\rm ON}$	High Electric Field	0.6 kV – 1.2 kV
	Normally-On JFET	High Temp.	Normally-On	1.2 kV – 6.5 kV
	Normally-Off JFET	Normally-Off	High R _{ON}	1.2 kV – 6.5 kV
Bipolar	BJT	No Gate Oxide	Current Driven	1.2 kV – 10 kV
	IGBT	High Voltage	Reliability	15 kV – 27 kV
	GTO	Low Conduction Loss	Difficult Control	> 8 kV
	Schottky Diode	No Reverse Recovery	High Leakage	0.1 kV – 8 kV
	JBS Diode	Low Leakage	High Forward Voltage	0.65 kV – 10 kV
	PiN Diode	Forward Voltage	Degradation	10 kV

Tutorial: Is SiC a Game Changer?

Switching loss benefits and simplified topologies are possible with high voltage SiC MOSFETs and IGBTs.

27.5 kV, 20 A SiC n-IGBT The world's highest-voltage semiconductor switch!

Bipolar SiC devices yield lower on-resistance for higher voltages.

© 2015 Cree, Inc. All rights reserved Tutorial: Is SiC a Game Changer?

Transformer-less Intelligent Power Substation with 15 kV SiC IGBT and 1.2 kV SiC MOSFET

- SiC-based 3-phase solid state transformer for 13.8 kV 480 V grid interconnection
- <u>Features</u>: High efficiency, small size, bidirectional, reactive power compensation, improved power quality, renewable integration

A. Kadavelugu, et al., "Medium voltage power converter design and demonstration using 15 kV SiC n-IGBTs," IEEE APEC, pp. 1396-1403, 2015.

© 2015 Cree, Inc. All rights reserved Tutorial: Is SiC a Game Changer?

On-State Characteristics of 10 kV SiC BJTs

10 kV SiC BJT Inductive Switching Test at 5 kV, 8 A and 150°C

Outline

- 1. Introduction
- 2. High Frequency and High Efficiency
 - Comparison with Si
 - Characterization of 1.2 kV SiC discrete transistors
- 3. High Temperature
 - For power density in normal temperature ambient
 - For operation in high-temperature ambient
- 4. Medium Voltage
- 5. High Voltage

6. Conclusions


```
For Vdc < 500 V:
```

SiC SBD + Si Super-junction MOSFET will compete with GaN-on-Si

For 0.5 kV < Vdc < 1 kV:

- · SiC Schottky (SBD) will be increasingly used instead of Si PiN
- · SiC transistors will start competing with Si MOSFETs and IGBTs based on converter cost, efficiency, size and performance – (A tough proposition!)
- For high switching frequencies (> 10 kHz) better module and converter packaging must be developed

For 1 kV < Vdc < 6 kV:

- SiC could be overtaking Si within 3-8 years
- · Improved packaging for higher switching frequencies, higher voltage, higher temperatures, and longer lifetime will provide competitive advantage
- Much improved systems based on new designs for electric machines, passives, and converters will be a game changer

CPES November 29, 2015

Tutorial: Is SiC a Game Changer?

Conclusions

For Medium and High Voltage (Vdc > 6 kV):

- SiC is the future! (Not a game changer, but a New Game.)
- Very innovative packaging and system design for high voltage, higher switching frequencies and long lifetime is required
- · Completely new systems and new applications will be developed
- This will become huge when the new electronic grid will start to be built

For High Ambient Temperature (> 200 °C):

- SiC is the future! (Not a game changer, but a New Game.)
- · Very innovative packaging for high temperature, higher switching frequencies and long lifetime is required
- Novel components for the "balance of system" (sensing, control, passives, interconnects, ...) will have to be invented and developed
- · Completely new systems and new applications will be developed ("Physics" will remain the problem!)

Tutorial: Is SiC a Game Changer?

db-152

Outline

- 1. Introduction
- 2. High Frequency and High Efficiency
 - Comparison with Si
 - Characterization of 1.2 kV SiC discrete transistors
- 3. High Temperature
 - For power density in normal temperature ambient
 - For operation in high-temperature ambient
- 4. Medium Voltage
- 5. High Voltage
- 6. Conclusions

Tutorial: Is SiC a Game Changer?

List of References – Applications

- S. Aso, M. Kizaki, and Y. Nonobe, "Development of fuel cell hybrid vehicles in TOYOTA," in Proc. IEEE Power Conversion Conf. 2007, pp. 1606-1611, 2007.
- [2] K. Rajashekara, "Converging technologies for electric/hybrid vehicles and more electric aircraft systems," SAE Technical Paper 2010-01-1757, 2010, doi: 10.4271/2010-01-1757, 2010.
- [3] J. A. Rosero, J. A. Ortega, E. Aldabas, and L. Romeral, "Moving towards a more electric aircraft," in IEEE Aerospace and Electronic Systems Magazine, vol. 22, issue 3, pp. 3-9, Mar. 2007.
- [4] A. A. Abd-Elhafez, and A. J. Forsyth, "A review of more-electric aircraft," in Proc. 13th Int'l Conf. Aerospace Sciences & Aviation Technology, May 2009.
- [5] H. Zhang, C. Saudemont, B. Robyns, and M. Petit, "Comparison of technical features between a more electric aircraft and a hybrid electric vehicle," in Proc. IEEE Vehicle Power and Propulsion Conf. (VPPC) 2008, pp. 1-6, Sept. 2008.
- [6] C. R. Avery, S. G. Burrow, and P. H. Mellor, "Electrical generation and distribution for the more electric aircraft," in Proc. 42nd Int'l Universities Power Engineering Conf. 2007, pp. 1007-1012, Sept. 2007. Chapter 1 13
- [7] R. E. Quigley, Jr., "More electric aircraft," in Proc. IEEE APEC 1993, pp. 906-911, 1993.
- [8] A. Emadi, and M. Ehsani, "Aircraft power systems: technology, state of the art, and future trends," in IEEE Aerospace and Electronic Systems Magazine, vol. 15, issue 1, pp. 28-32, Jan. 2000.
- [9] M. Sinnett, "787 no-bleed systems: saving fuel and enhancing operational efficiencies," in Boeing Aero Quarterly, QTR 04, 2007, available online at <u>http://www.boeing.com/</u>, accessed on Sept. 22, 2012.
- [10] K. Rajashekara, J. Grieve, and D. Daggett, "Hybrid fuel cell in aircraft," in IEEE Industry Applications Magazine, vol. 14, issue 4, pp. 54-60, Jul.-Aug. 2008.
- [11] C. C. Chan, "The state of the art of electric, hybrid, and fuel cell vehicles," in Proceedings of the IEEE, vol. 95, issue 4, pp. 704-718, Apr. 2007.

Tutorial: Is SiC a Game Changer?

db-154

List of References – Applications

- [12] T. J. McCoy, "Trends in ship electric propulsion," in Proc. IEEE Power Engineering Society Summer Meeting, vol. 1, pp. 343-346, Jul. 2002.
- [13] H. Zhang, L. M. Tolbert, and B. Ozpineci, "Impact of SiC devices on hybrid electric and plug-in hybrid electric vehicles," in IEEE Trans. Industry Applications, vol. 47, no. 2, pp. 912-921, Mar.-Apr. 2011.
- [14] B. Wrzecionko, J. Biela, and J. W. Kolar, "SiC power semiconductors in HEVs: influence of junction temperature on power density, chip utilization and efficiency," in Proc. IEEE IECON 2009, pp. 3834-3841, Nov. 2009.
- [15] B. Ozpineci, System Impact of Silicon Carbide Power Electronics on Hybrid Electric Vehicles, Ph. D. Dissertation, University of Tennessee, Knoxville, 2002.

Tutorial: Is SiC a Game Changer?

List of References – High Temperature Components

- [1] E. Cilio, J. Garrett., and H. Fraley., "High Temperature Electronics (>485°C) For Venus Exploration," presented at the 4th International Planetary Probe Workshop, Pasadena, California,, 2006.
- [2] M. R. Werner and W. R. Fahrner, "Review on materials, microsensors, systems and devices for hightemperature and harsh-environment applications," Industrial Electronics, IEEE Transactions on, vol. 48, pp. 249-257, 2001.
- [3] R. L. Greenwell, B. M. McCue, L. Zuo, M. A. Huque, L. M. Tolbert, B. J. Blalock, and S. K. Islam, "SOIbased integrated circuits for high-temperature power electronics applications," in Applied Power Electronics Conference and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE, 2011, pp. 836-843.
- [4] M. Stecher, N. Jensen, M. Denison, R. Rudolf, B. Strzalkoswi, M. N. Muenzer, and L. Lorenz, "Key technologies for system-integration in the automotive and Industrial Applications," Power Electronics, IEEE Transactions on, vol. 20, pp. 537-549, 2005.
- [5] E.Cilio., J.Hornberger., and R.Schupbach., "A High-Temperature (225 °C+) Silicon-On-Insulator (SOI) Gate Driver IC For Silicon Carbide (SiC) JFET," presented at the International Conference on High Temperature Electronics (HiTEC 2008), Albuquerque, New Mexico, 2008.
- [6] M. A. Huque, R. Vijayaraghavan, M. Zhang, B. J. Blalock, L. M. Tolbert, and S. K. Islam, "An SOI-based High-Voltage, High-Temperature Gate-Driver for SiC FET," in Power Electronics Specialists Conference, 2007. PESC 2007. IEEE, 2007, pp. 1491-1495.
- [7] Cissoid Datasheet. Available: <u>http://www.cissoid.com/images/stories/pdf/Datasheets/cmtopa.pdf</u>
- [8] MIL-STD-883H. Available: http://www.dscc.dla.mil/downloads/milspec/docs/mil-std-883/std883.pdf
- [9] S. Waffler, S. D. Round, and J. W. Kolar, "High temperature (>200C) isolated gate drive topologies for Silicon Carbide (SiC) JFET," in Industrial Electronics, 2008. IECON 2008. 34th Annual Conference of IEEE, 2008, pp. 2867-2872.
- [10] S. Waffler, S. D. Round, and J. W. Kolar, "High temperature (>>200°C) isolated gate drive topologies for Silicon Carbide (SiC) JFET," in Industrial Electronics, 2008. IECON 2008. 34th Annual Conference of IEEE, 2008, pp. 2867-2872.

List of References – High Temperature Components

[11] R. Constapel, J. Freytag, P. Hille, V. Lauer, and W. Wondrak, "High temperature electronics for automotive applications," in Proc. Int. Conf. Integrated Power Systems (CIPS'00), pp. 46–53.

[12] A. Gurav, X. Xu, J. Magee, P. Staubli, J. Bultitude, T. Ashburn, "Advanced ceramic capacitor solutions for high temperature applications," in *Proc. IMAPs Conf. and Expo. on HiTEN 2013*, pp. 25-32.

[13] Presidio Components, Inc., "High temperature ceramic capacitors," Catalog 3500. Rev. K. (2013). [Online]. Available: <u>http://www.presidiocomponents.com/catalog/HighTempCeramicCapsRevK-</u> Sept2013.pdf.

Tutorial: Is SiC a Game Changer?

List of References – High Temperature Converters

- [1] K. Acharya, S. K. Mazumder, and P. Jedraszczak, "Efficient, High-Temperature Bidirectional Dc/Dc Converter for Plug-in-Hybrid Electric Vehicle (PHEV) using SiC Devices," in Applied Power Electronics Conference and Exposition, 2009. APEC 2009. Twenty-Fourth Annual IEEE, 2009, pp. 642-648.
- [2] D. C. Hopkins, D. W. Kellerman, R. A. Wunderlich, C. Basaran, and C. J. Gomez, "High temperature, high-density packaging of a 60kW converter for >200°C embedded operation," in Applied Power Electronics Conference and Exposition, 2006. APEC '06. Twenty-First Annual IEEE, 2006, p. 7 pp.
- [3] High Temperature and High Power Density SiC Power Electronic Converters. Available: http://www.sandia.gov/ess/docs/pr_conferences/2005/Schupbach.pdf
- [4] D. Bergogne, H. Morel, D. Planson, D. Tournier, P. Bevilacqua, B. Allard, R. Meuret, S. Vieillard, S. Rael, and F. MeibodyTabar, "Towards an airborne high temperature SiC inverter," in Power Electronics Specialists Conference, 2008. PESC 2008. IEEE, 2008, pp. 3178-3183.
- [5] W. Ruxi, N. Puqi, D. Boroyevich, M. Danilovic, F. Wang, and R. Kaushik, "Design of high temperature SiC three-phase AC-DC converter for >100°C ambient temperature," in Energy Conversion Congress and Exposition (ECCE), 2010 IEEE, 2010, pp. 1283-1289.
- [6] M. Gerber, J. A. Ferreira, I. W. Hofsajer, and N. Seliger, "An improved 3D integrated DC/DC converter for high temperature environments," in Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, 2004, pp. 2779-2785 Vol.4.
- [7] C. Buttay, J. Rashid, C. M. Johnson, F. Udrea, G. Amaratunga, P. Ireland, and R. K. Malhan, "Compact Inverter Designed for High-Temperature Operation," in Power Electronics Specialists Conference, 2007. PESC 2007. IEEE, 2007, pp.
- [8] E. Cilio, J. Hornberger, B. McPherson, R. Schupbach, and A. Lostetter, "Design and Fabrication of a High Temperature (250 ŰC Baseplate), High Power Density Silicon Carbide (SiC) Multichip Power Module (MCPM) Inverter," in IEEE Industrial Electronics, IECON 2006 - 32nd Annual Conference on, 2006, pp. 1822-1827.2241-2247.

List of References – High Temperature Converters

- [9] R. Wang, "High Power Density and High Temperature Converter Design for Transportation Applications," PhD Dissertation, Virginia Tech, June 2012.
- [10] B. Ray, H. Kosai, J.D. Scofield, James, and B. Jordan, "200°C operation of a DC-DC converter with SiC power devices," in Proc. of IEEE APEC 2007, Feb.-Mar. 2007, pp. 998 – 1002.
- [11] J. M. Hornberger, E. Cilio, B. McPherson, R. M. Schupbach and A. B. Lostetter, "A fully integrated 300 °C, 4 KW, 3-phase, SiC motor drive module," Proc. of PESC 2007, pp. 1048-1053.
- [12] V. R. Garuda, M. K. Kazimierczuk, M. L. Ramalingam, L. Tolkkinen, M. D. Roth, "High temperature testing of a buck converter using silicon and silicon carbide diodes," in *Proc. Energy Conversion Engineering Conference*, vol.1, pp.317-322, 1997.

Tutorial: Is SiC a Game Changer?

List of References – High Temperature SiC

- [1] J. Hornberger, A. B. Lostetter, K. J. Olejniczak, T. McNutt, S. M. Lal, and A. Mantooth, "Silicon-carbide (SiC) semiconductor power electronics for extreme high-temperature environments," in Aerospace Conference, 2004. Proceedings. 2004 IEEE, 2004, pp. 2538-2555 Vol.4.
- [2] T. Funaki, J. C. Balda, J. Junghans, A. S. Kashyap, H. A. Mantooth, F. Barlow, T. Kimoto, and T. Hikihara, "Power Conversion With SiC Devices at Extremely High Ambient Temperatures," Power Electronics, IEEE Transactions on, vol. 22, pp. 1321-1329, 2007.
- [3] R. Mousa, D. Planson, H. Morel, B. Allard, and C. Raynaud, "Modeling and high temperature characterization of SiC-JFET," in Power Electronics Specialists Conference, 2008. PESC 2008. IEEE, 2008, pp. 3111-3117.
- [4] T. Burke, K. Xie, J. R. Flemish, H. Singh, T. Podlesak, and J. H. Zhao, "Silicon carbide power devices for high temperature, high power density switching applications," in Power Modulator Symposium, 1996., Twenty-Second International, 1996, pp. 18-21.
- [5] R. Mousa, D. Planson, H. Morel, and C. Raynaud, "High temperature characterization of SiC JFET and modelling," in Power Electronics and Applications, 2007 European Conference on, 2007, pp. 1-10.
- [6] M. S. Chinthavali, B. Ozpineci, and L. M. Tolbert, "High-temperature and high-frequency performance evaluation of 4H-SiC unipolar power devices," in Applied Power Electronics Conference and Exposition, 2005. APEC 2005. Twentieth Annual IEEE, 2005, pp. 322-328 Vol. 1.
- [7] J. M. Homberger, S. D. Mounce, R. M. Schupbach, A. B. Lostetter, and H. A. Mantooth, "High-temperature silicon carbide (SiC) power switches in multichip power module (MCPM) applications," in Industry Applications Conference, 2005. Fourtieth IAS Annual Meeting. Conference Record of the 2005, 2005, pp. 393-398 Vol. 1.
- [8] T. Funaki, A. S. Kashyap, H. A. Mantooth, J. C. Balda, F. D. Barlow, T. Kimoto, and T. Hikihara, "Characterization of SiC JFET for Temperature Dependent Device Modeling," in Power Electronics Specialists Conference, 2006. PESC '06. 37th IEEE, 2006, pp. 1-6.

List of References – High Temperature SiC

- [9] A. Lostetter, J. Hornberger, B. McPherson, B. Reese, R. Shaw, M. Schupbach, B. Rowden, A. Mantooth, J. Balda, T. Otsuka, K. Okumura, and M. Miura, "High-temperature silicon carbide and silicon on insulator based integrated power modules," in Vehicle Power and Propulsion Conference, 2009. VPPC '09. IEEE, 2009, pp. 1032-1035.
- [10] J. Hornberger, A. Lostetter, T. McNutt, S. Magan Lal, and A. Mantooth, "The application of siliconcarbide (SiC) semiconductor power electronics to extreme high-temperature extra terrestrial environments," Proceedings of the 2004 IEEE Aerospace Conference, MT, March 2004.
- [11] J. Hornberger, S. Mounce, R. Schupbach, B.McPherson, H. Mustain, A. Mantooth, W.Brown, and A.B. Lostetter, "High-temperature integration of silicon carbide (SiC) and Silicon-on-Insulator Reference 146 (SOI) electronics in multichip power modules (MCPMs)," 11th European Conference on Power Electronics and Applications (EPE2005), Dresden Germany, September 2005.
- [12] S. Mounce, B. McPherson, R. Schupbach, A.B. Lostetter, "Ultra-lightweight, high efficiency SiC based power electronic converters for extreme environments," Aerospace Conference, 2006 IEEE 4- 11 March 2006 pp.1-19.
- [13] H.A. Mustain, A.B. Lostetter, W.D. Brown, "Evaluation of gold and aluminum wire bond performance for high temperature (500 /spl deg/C) silicon carbide (SiC) power modules", Electronic Components and Technology Conference, 2005. Proceedings. 55th 31 May-3 June 2005 Page(s):1623 - 1628 Vol. 2.
- [14] A. Lindgren, and M. Domeij, "1200 V 6 A high temperature SiC BJTs," in Proc. IMAPS Int'l Conference and Exhibition on High Temperature Electronics (HiTEC) 2010, pp. 160-166, 2010.
- [15] R. Singh, S. Sundaresan, E. Lieser, and M. Digangi, "1200 V SiC 'super' junction transistors operating at 250 °C with extremely low energy losses for power conversion applications," in Proc. IEEE APEC 2012, pp. 2516-2520, Feb. 2012.

Tutorial: Is SiC a Game Changer?

List of References – High Temperature SiC

- [16] L. Cheng, A. K. Agarwal, S. Dhar, S.-H. Ryu, and J. W. Palmour, "Static performance of 20 A, 1200 V 4H-SiC power MOSFETs at temperatures of -187 °C to 300 °C," in Journal of Electronic Materials, vol. 41, no. 5, pp. 910-914, 2012.
- [17] S. Araujo, P. Zacharias, "Reducing expenditure with cooling in renewable power conversion systems with innovative SiC switches," *Integrated Power Electronics Systems (CIPS)*, pp.1-6, 6-8 March 2012.
- [18] C. DiMarino, "High Temperature Characterization and Analysis of Silicon Carbide (SiC) Power Semiconductor Transistors," MS Thesis, Virginia Tech, May 2014.
- [19] R. Singh, S. Sundaresan, E. Lieser, M. Digangi, "1200 V SiC 'super' junction transistors operating at 250 °C with extremely low energy losses for power conversion applications," IEEE APEC, pp. 2516-2520, Feb. 2012.
- [20] Z. Chen, Y. Yao, M. Danilovic, D. Boroyevich, "Performance evaluation of SiC power MOSFETs for high temperature applications," IEEE ECCE, pp. DS1a.8-1- DS1a.8-9, Sept. 2012.
- [21] P. Losee, A. Bolotnikov, L. Yu, R. Beaupre, et al., "1.2kV class SiC MOSFETs with improved performance over wide operating temperature," IEEE ISPSD, pp. 297-300, 2014.

List of References – High Temperature Packaging

- Z. Liang, J. Yin, and J. D. v. Wyk, "An advanced packaging approach of sic high temperature power electronics modules by embedding chip interconnection," presented at the IMPAS HiTEC 2006, 2006.
- [2] N. Puqi, T. G. Lei, F. Wang, L. Guo-Quan, and K. D. T. Ngo, "A Novel High-Temperature Planar Package for SiC Multi-Chip Phase-Leg Power Module," in Applied Power Electronics Conference and Exposition, 2009. APEC 2009. Twenty-Fourth Annual IEEE, 2009, pp. 2061- 2067.
- [3] Y. Sugawara, D. Takayama, K. Asano, R. Singh, H. Kodama, S. Ogata, and T. Hayashi, "3 kV 600 A 4H-SiC high temperature diode module," in Power Semiconductor Devices and ICs, 2002. Proceedings of the 14th International Symposium on, 2002, pp. 245-248.
- [4] Y. Jian, L. Zhenxian, and J. D. van Wyk, "High temperature embedded power module," in Applied Power Electronics Conference and Exposition, 2005. APEC 2005. Twentieth Annual IEEE, 2005, pp. 357-361 Vol. 1.
- [5] B. Reese, B. McPherson, and R. Shaw, "High Temperature (250 °C) Silicon Carbide Power Modules With Integrated Gate Drive Boards," presented at the International Conference on High Temperature Electronics (HiTEC 2010), Albuquerque, New Mexico, 2010.
- [6] J. Guofeng Bai, Y. Jian, Z. Zhiye, L. Guo-Quan, and J. D. van Wyk, "High-Temperature Operation of SiC Power Devices by Low-Temperature Sintered Silver Die-Attachment," Advanced Packaging, IEEE Transactions on, vol. 30, pp. 506-510, 2007
- [7] P. Ning, "Design and Development of High Density High Temperature Power Module with Cooling System," PhD Dissertation, Virginia Tech, May 2010.
- [8] R. W. Johnson, M. Palmer, C. Wang, Y Liu, "Packaging materials and approaches for high temperature SiC power devices", Advancing Microelectronics, vol. 31 no. 1, pp. 8-11, Jan.-Feb. 2004.
- [9] L. Coppola, D. Huff, F. Wang, R. Burgos, D. Boroyevich, "Survey on high-temperature packaging materials for SiC-based power electronics modules," in Proc. IEEE PESC, pp. 2234 – 2240, 2007.

Tutorial: Is SiC a Game Changer?

List of References – High Temperature Packaging

- [10] P. Ning, R. Lai, D. Huff, F. Wang, and K. D. T. Ngo, "250°C SiC power module package dDesign," in Proc. SAE PSC 2008, Nov. 2008, pp. 217-223.
- [11] D. C. Katsis and Z. Yunqi, "Development of an extreme temperature range silicon carbide power module for aerospace applications," in Power Electronics Specialists Conference, 2008. PESC 2008. IEEE, 2008, pp. 290-294.
- [12] S. Kulkarni, F. Barlow, A. Elshabini, and R. Edgeman, "SiC and GaN die attach for extreme environment electronics," in Proc. IMAPS 2008, November, 2008, pp. 1119-1125.
- [13] N. Yue, thesis, "Planar packaging and electrical characterization of high temperature SiC power electronic devices," Virginia Polytechnic Institute and State University, 2008.
- [14] T. G. Lei, J. N. Calata, G-Q Lu, "Low-temperature sintering of nanoscale silver paste for hightemperature power chip attachment", 5th Inter. Conf. on Integrated Power Electronics Systems, CIPS 2008.
- [15] J. N. Calata, T. G. Lei, G-Q. Lu, "Sintered nanosilver paste for high-temperature power semiconductor device attachment," Int. J. Materials and Product Technology, Vol. 34, No. 1/2, 2009, pp. 95-110.
- [16] B. Grummel, R. McClure, L. Zhou, A. P. Gordon, L. Ghow, and Z. J. Shen, "Design consideration of high temperature SiC power modules," in Proc. IEEE IECON 2008, pp. 2861-2866, Nov. 2008.
- [17] Y. Yao, Z. Chen, G.-Q. Lu, D. Boroyevich, and K. D. T. Ngo, "Characterization of encapsulants for high-voltage high-temperature power electronic packaging," in IEEE Trans. Components, Packaging and Manufacturing Technology, vol. 2, no. 4, pp. 539-547, Apr. 2012.
- [18] Y. Yao, Z. Chen, D. Boroyevich, and K. D. T. Ngo, "High-temperature reliability of direct-bond-copper substrates with sealed edges," in Proc. IMAPS HiTEC 2012, pp. 1-5, May 2012.
- [19] J. D. Scofield, J. N. Merrett, J. Richmond, A. Agarwal, and S. Leslie, "Performance and Reliability Characteristics of 1200V, 100A, 200C Half-Bridge SiC MOSFET-JBS Diode Power Modules," presented at the International Conference on High Temperature Electronics (HiTEC 2010), 2010.

List of References – High Density SiC

- [1] S. Round, M. Heldwein, J. Kolar, I. Hofsajer, and P. Friedrichs, "A SiC JFET driver for a 5 kW, 150 kHz three-phase PWM converter," in Industry Applications Conference, 2005. Fortieth IAS Annual Meeting. Conference Record of the 2005, 2005, pp. 410-416 Vol. 1.
- [2] D. Boroyevich, C. Zheng, L. Fang, N. Khai, N. Puqi, W. Ruxi, Z. Di, F. Wang, R. Burgos, L. Rixin, and W. Shuo, "High-density system integration for medium power applications," in Integrated Power Electronics Systems (CIPS), 2010 6th International Conference on, 2010, pp. 1-10.
- [3] H. R. Chang, E. Hanna, and A. V. Radun, "Demonstration of silicon carbide (SiC) -based motor drive," in Industrial Electronics Society, 2003. IECON '03. The 29th Annual Conference of the IEEE, 2003, pp. 1116-1121 Vol.2.
- [4] C.Rebbereh, H.Schierling, and M.Braun, "First inverter using silicon carbide power switches only," in EPE 2003, 2003.
- [5] R. Lai, Analysis and Design for a High Power Density Three-Phase AC Converter Using SiC Devices, dissertation, 2008, Virginia Polytechnic institute and state university.
- [6] R. M. Cuzner and J. C. VanderMeer, "Impacts to the power density of ship electric drives," IEEE Power Electronics Society Newsletter, vol. 16, no. 3, pp.10-12, 2004.
- [7] D. Aggeler, J. Biela and J. W. Kolar, "A compact, high voltage 25 kW, 50 kHz dc-dc converter based on SiC JFETs," Proc. of APEC 2008, pp. 801-807.
- [8] C. Cass, R. Burgos, F. Wang and B. Dushan, "Three-phase ac buck rectifier using normally-on SiC JFETs at 150 kHz switching frequency," Proc. of PESC 2007, pp. 2162-2167.
- [9] E. Cilio, J. M. Hornberger, B. McPherson, R. M. Schupbach, A. B. Lostetter and J. Garrett, "A novel high density 100 kW three-phase silicon carbide (SiC) multichip power module (MCPM) inverter," Proc. of APEC 2007, pp. 666-672.

Tutorial: Is SiC a Game Changer?

List of References – High Density SiC

- [10] C. Callaway, Y. Wang, R. Burgos, T. P. Chow, F. Wang, and D. Boroyevich, "Evaluation of SiC JFETs for a three-phase current-source rectifier with high switching frequency," Proc. IEEE Appl. Power Electron. Conf. (APEC), pp. 345-351, 2007.
- [11] Z. Chen, "Electrical Integration of SiC Power Devices for High-Power-Density Applications," PhD Dissertation, Virginia Tech, Sept. 2013.

List of References – High Voltage SiC

- [1] Zhao, P. Alexandrov, and X. Li, "Demonstration of the First 10-kV 4HSiC Schottky Barrier Diodes," IEEE Electron Device Letters, vol. 24, no. 6, June 2003, pp. 402–404.
- [2] A. Bolotnikov, P. Losee, K. Matocha, J. Glaser, J. Nasadoski, and L. Wang et al, "3.3 kV SiC MOSFETs designed for low on-resistance and fast switching," in Proc. Int'l Symposium on Power Semiconductor Devices and ICs (ISPSD) 2012, pp. 389-392, Jun. 2012.
- [3] S. H. Ryu, S. Krishnaswami, M. O'Loughlin, J. Richmond, A. Agarwal, and J. Palmour et al, "10-kV 123mΩ·cm 2, 4H-SiC power DMOSFETs," in IEEE Electron Device Letters, vol. 25, no. 8, pp. 556-558, Aug. 2004.
- [4] S. H. Ryu, S. Krishnaswami, B. Hull, J. Richmond, A. Agarwal, and A. R. Hefner, "10 kV, 5 A 4H-SiC power DMOSFET," in Proc. IEEE ISPSD 2006, pp. 1-4, 2006.
- [5] M. K. Das, C. Capell, D. E. Grider, R. Raju, M. Schutten, and J. Nasadoski et al, "10 kV, 120 A SiC half Hbridge power MOSFET modules suitable for high frequency, medium voltage applications," in Proc. IEEE ECCE 2011, pp. 2689- 2692, Sept. 2011.
- [6] B. Callanan, "Characteristics, application, and high power demonstration of 1.7 kV 100 mΩ silicon carbide MOSFETs," Special Presentation in IEEE APEC 2011, SP2.3.4, Mar. 2011.
- [7] B. A. Hull, J. J. Sumakeris, M. J. O'Loughlin, Q. Zhang, J. Richmond, A. R. Powell, E. A. Imhoff, K. D. Hobart, A. Rivera-Lopez, A. R. Hefner, "Performance and stability of large-area 4H-SiC 10-kV junction barrier Schottky rectifiers," IEEE Trans. Electron. Devices, vol. 55, no. 8, pp. 1864-1870, 2008.
- [8] H. Mirzaee, A. De, A. Tripathi, S. Bhattacharya, "Design comparison of high-power medium-volage converters based on a 6.5-kV Si-IGBT/Si-PiN diode, a 6.5-kV Si-IGBT/SiC-JBS diode, and a 10-kV SiC-MOSFET/SiC-JBS diode," IEEE Trans. Ind. Appl., vol. 50, no. 4, July/Aug. 2014.
- [9] D. Grider, M. Das, R. Raju, M. Schutten, S. Leslie, J. Ostop, A. Hefner, "10 kV/120 A SiC DMOSFET half H-bridge power modules for 1 MVA solid state power substation," in IEEE ESTS, pp. 131-134, 2011.

Tutorial: Is SiC a Game Changer?

- [10] T. H. Duong, A. Rivera-Lopez, A. R. Hefner, "Circuit simulation model for a 100 A, 10 kV half-bridge SiC
- MOSFET/JBS power module," in Proc. IEEE APEC, pp. 913-917, 2008.

db-168 🐹 🐨

CPES November 29, 2015

List of References – High Voltage SiC

- [11] J. Thoma, D. Chilachava, D. Kranzer, "A highly efficient dc-dc converter for medium-voltage applications," IEEE ENERGYCON, pp. 127-131, 2014.
- [12] O. Hohlfeld, R. Bayerer, T. Hunger, H. Hartung, "Stacked substrates for high voltage applications," IEEE CIPS, pp. 1-4, 2012.
- [13] A. Kadavelugu, K. Mainali, D. Patel, et al., "Medium voltage power converter design and demonstration using 15 kV SiC n-IGBTs," IEEE APEC, pp. 1396-1403, 2015.

List of References – SiC Transistors

- [1] I. Sankin, D.C. Sheridan, W. Draper, V. Bondarenko, R. Kelley, M.S. Mazzola, and J.B. Casady, "Normally-off SiC VJFETs for 800 V and 1200 V power switching applications," Proceedings of the 20th International Symposium on Power Semiconductor Devices & IC's May 18-22, 2008 Oralando, FL, pp. 260-262.
- [2] R.J. Callanan, A. Agarwal, A. Burk, M. Das, B. Hull, F. Husna, A. Powell, J. Richmond, S. Ryu, Q. Zhang, "Recent progress in SiC DMOSFETs and JBS diodes at Cree," Industrial Electronics, 2008. IECON 2008. 34th Annual Conference of IEEE,10-13 Nov. 2008, pp. 2885 – 2890.
- [3] Z. Chen, D. Boroyevich, R. Burgos, and F. Wang, "Characterization and modeling of 1.2 kV, 20 A SiC MOSFETs," in Proc. IEEE ECCE 2009, pp. 1480-1487, Sept. 2009.
- [4] Z. Chen, Characterization and Modeling of High-Switching-Speed Behavior of SiC Active Devices, M. S. Thesis, Virginia Polytechnic Institute and State University, Dec. 2009.
- [5] M. Domeij, H. S. Lee, C. M. Zetterling, M. Ostling, "Analysis of the base current and saturation voltage in 4H-SiC power BJTs," IEEE EPE, pp. 1-7, Sept. 2007.
- [6] Y. Gao, "Analysis and optimization of 1200V silicon carbide bipolar junction transistor," Ph.D. dissertation, Dept. Elect. Eng., NC State Univ., Raleigh, NC, 2007.
- [7] Claudio, H. Wang, A. Q. Huang, A. K. Agarwal, "Static and dynamic characterization of silicon carbide bipolar junction transistor," IEEE IECON, vol. 2, pp. 1173-1178, Nov. 2003.
- [8] Buono, "Simulation and characterization of silicon carbide power bipolar junction transistors," Ph.D. dissertation, Integr. Dev. Circuits Dept., KTH Royal Inst. Techol., Stockholm, Sweden, 2012.
- [9] B. Buono, R. Ghandi, M. Domeij, B. G. Malm, C. M. Zetterling, M. Ostling, "Modeling and characterization of current gain versus temperature in 4H-SiC power BJTs," IEEE Trans. Electron. Dev., vol. 57, no. 3, pp. 704-711, March 2010.
- [10] M. J. Kumar, P. Vinod, "Enhanced current gain in SiC power BJTs using surface accumulation layer transistor (SALTran) concept," J. Microelectron. Eng., vol. 81, pp. 90-95, April 2005.

Tutorial: Is SiC a Game Changer?

List of References – SiC Transistors

- [11] X. Li, Y. Luo, L. Fursin, J. H. Zhao, M. Pan, P. Alexandrov, M. Weiner, "On the temperature coefficient of 4H-SiC BJT current gain," Solid-State Electron., vol. 47, pp. 233-239, April 2003.
- [12] R. Siemieniec, U. Kirchner, "The 1200V direct-driven SiC JFET power switch," IEEE EPE, pp. 1-10, Sept. 2011.
- [13] W. Berger, F. Bjoerk, D. Domes, G. Deboy, "Infineon's 1200V SiC JFET- The new way of efficient and reliable high voltages switching," www.infineon.com, accessed: Apr. 2014.
- [14] I. Sankin, D. C. Sheridan, W. Draper, V. Bondarenko, R. Kelley, M. S. Mazzola, J. B. Casady, "Normallyoff SiC VJFETs for 800 V and 1200 V power switching applications," IEEE ISPSD, pp. 260-262, May 2008.
- [15] R. Burgos, Z. Chen, D. Boroyevich, and F. Wang, "Design considerations of a fast 0-Ω gate-drive circuit for 1.2 kV SiC JFET devices in phase-leg configuration," in Proc. IEEE ECCE 2009, pp. 2293–2300, Sept. 2009.
- [16] K Okumura, N. Hase, K. Ino, T. Nakamura, M. Tanimura, "Ultra low on-resistance SiC trench devices," Power Semiconductors Mag., no. 4, pp. 22-25, 2012.
- [17] A. Agarwal, Q. Zhang, A. Burk, R. Callanan, S. Maxumder, "Prospects of bipolar power devices in silicon carbide," IEEE IECON, pp. 2879-2884, 2008.
- [18] K. Uchida, Y. Saitoh, T. Hiyoshi, T. Masuda, et al., "The optimised design and characterization of 1200 V / 2.0 mΩ cm² 4H-SiC V-groove trench MOSFETs," IEEE ISPSD, pp. 85-88, 2015.
- [19] V. Pala, A. Barkley, B. Hull, G. Wang, et al., "900 V silicon carbide MOSFETs for breakthrough power supply design," IEEE ECCE, pp. 4145-4150, 2015.

List of References – Device Comparisons

- [1] T. Zhao, J. Wang, A. Huang, and A. Agarwal, "Comparisons of SiC MOSFET and Si IGBT based motor drive systems," in Proc. IEEE Industrial Applications Conf., pp. 331-335, Sept. 2007.
- [2] J. S. Glaser, J. J. Nasadoski, P. A. Losee, A. S. Kashyap, K. S. Matocha, and J. L. Garret et al, "Direct comparison of silicon and silicon carbide power transistors in high-frequency hard-switched applications," in Proc. IEEE APEC 2011, pp. 1049- 1056, Mar. 2011.
- [3] A. Kadavelugu, V. Baliga, S. Bhattacharya, M. Das, and A. Agarwal, "Zero voltage switching performance of 1200 V SiC MOSFET, 1200 V silicon IGBT and 900 V CoolMOS MOSFET," in Proc. IEEE ECCE 2011, pp. 1819-1826, Sept. 2011.
- [4] L. D. Stevanovic, K. S. Matocha, P. A. Losee, J. S. Glaser, J. J. Nasadoski, S. D. Arthur, "Recent advances in silicon carbide MOSFET power devices," IEEE APEC, pp. 401-407, Feb. 2010.
- [5] J. McBryde, A. Kadavelugu, B. Compton, S. Bhattacharya, M. Das, A. Agarwal, "Performance comparison of 1200 V silicon and SiC devices for UPS application," IEEE IECON, pp. 2657-2662, Nov. 2010.
- [6] S. Piasecki, A. M. Cantarellas, J. Rabkowski, P. Rodriguez, "Design of AC-DC power converters with LCL + tuned trap line filter using Si IGBT and SiC MOSFET modules," IEEE IECON, pp. 5957-5962, Nov. 2013.
- [7] W. T. Franke, "Comparison of six different SiC power switching devices in the 1200 V range," PCIM, 2012.
- [8] A. Lemmon, M. Mazzola, J. Gafford, K. M. Speer, "Comparative analysis of commercially available silicon carbide transistors," IEEE APEC, pp. 2509-2515, 2012. [35] B. Rubino, M. Macauda, M. Nania, S. Buonomo, "Direct comparison among different technologies in silicon carbide," PCIM, 2012.
- [9] K. Haehre, M. Meisser, F. Denk, R. Kling, "Characterization and comparison of commercially available silicon carbide (SiC) power switches," PEMD, pp. 1-6, 2012.
- [10] S. H. Ryu, S. Krishnaswami, B. A. Hull, B. Heath, F. Husna, J. Richmond, A. Agarwal, J. Palmour, J. Scofield, "A comparison of high temperature performance of SiC DMOSFETs and JFETs," Mater. Sci. Forum, vols. 556-557, pp. 775-778, Sept. 2007.

Tutorial: Is SiC a Game Changer?

List of References – Device Comparisons

- [11] C. DiMarino, Z. Chen, M. Danilovic, D. Boroyevich, R. Burgos, P. Mattavelli, "High-temperature characterization and comparison of 1.2 kV SiC power MOSFETs," IEEE ECCE, pp. 3235-3242, Sept. 2013.
- [12] C. DiMarino, Z. Chen, D. Boroyevich, R. Burgos, P. Mattavelli, "Characterization and comparison of 1.2 kV SiC power semiconductor devices," IEEE EPE, pp. 1-10, Sept. 2013.
- [13] C. DiMarino, Z. Chen, D. Boroyevich, R. Burgos, P. Mattavelli, "High-temperature characterization and comparison of 1.2 kV SiC power semiconductor devices," J. Microelectron. Electron. Packaging, vol. 10, no. 4, pp. 138, 2013
- [14] A. Ong, J. Carr, J. Balda, A. Mantooth, "A comparison of silicon and silicon carbide MOSFET switching characteristics," IEEE Region 5 Tech. Conf., pp. 273-277, Apr. 2007.

Tutorial: Is SiC a Game Changer?

2015

List of References – SiC Reliability

- M. Maranowski, and J. Cooper Jr., "Time-dependent-dielectric breakdown measurements of thermal oxides on N-type 6H-SiC," in IEEE Trans. Electron Devices, vol. 46, no. 3, pp. 520-524, Mar. 1999.
- [2] R. Singh, "Reliability and performance limitations in SiC power devices," in Microelectronics Reliability, vol. 46, pp. 713-730, 2006.
- [3] A. Agarwal, S. Seshadri, and L. Rowland, "Temperature dependence of Fowler Nordheim current in 6Hand 4H-SiC MOS capacitors," in IEEE Electron Device Letters, vol. 18, no. 12, pp. 592-594, Dec. 1997.
- [4] L. Yu, K. Cheung, J. Campbell, J. Suehle, and K. Sheng, "Oxide reliability of SiC MOS devices," in IEEE Int'l Integrated Reliability Workshop Final Report 2008, pp. 141-144, Oct. 2008.
- [5] L. Yu, G. Dunne, K. Matocha, K. Cheung, J. Suehle, and K. Sheng, "Reliability issues of SiC MOSFETs: a technology for high temperature environments," in Chapter 2 44 IEEE Trans. Device and Materials Reliability, vol. 10, no. 4, pp. 418-426, Dec. 2010.
- [6] A. Lelis, D. Habersat, R. Green, A. Ogunniyi, M. Gurfinkel, and J. Suehle et al, "Time dependence of biasstress-induced SiC MOSFET threshold-voltage instability measurements," in IEEE Trans. Electron Devices, vol. 55, no. 8, pp. 1835-1840, Aug. 2008.
- [7] M. Gurfinkel, H. D. Xiong, K. P. Cheung, J. S. Suehle, J. B. Bernstein, and Y. Shapira et al, "Characterization of transient gate oxide trapping in SiC MOSFETs using fast I-V techniques," in IEEE Trans. Electron Devices, vol. 55, no. 8, pp. 2004-2012, Aug. 2008.
- [8] A. J. Lelis, R. Green, and D. Habersat, "High-temperature reliability of SiC power MOSFETs," in Materials Science Forum, vol. 679-680, pp. 599-602, 2011.
- [9] A. Lelis, R. Green, and D. Habersat, "Effect of threshold-voltage instability on SiC power MOSFET hightemperature reliability," in ECS Transactions, vol. 41, issue 8, pp. 203-214, 2011.
- [10] A. Agarwal, H. Fatima, S. Haney, S.H. Ryu, "A new degradation mechanism in high-voltage SiC power MOSFETs," IEEE Electron. Device Lett., vol. 28, no. 7, pp. 587-589, 2007.

Tutorial: Is SiC a Game Changer?

List of References – SiC Reliability

- [11] R. Singh, "Reliability and performance limitations in SiC power devices," Microelectronics Rel., vol. 46, pp. 713-730, 2006.
- [12] J. Liu, M. Skowronski, C. Hallin, R. Soderholm, H. Lendenmann, "Structure of recombination-induced stacking faults in high-voltage SiC p-n junctions," Appl. Physics Lett., vol. 80, no. 5, pp. 749-751, 2002.

