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Newsweek’s top 10 (world) hottest cities 2006 

“Florianópolis, Brazil –  

aka 'Silicon Valley of Brazil, with beaches', ban on heavy industry” 

~380 000 people / 17 universities / 2 technological centers 

Aim: create 40k tech jobs in 10 years 
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Federal University of Santa Catarina (2013) 

• Entry students /year:  
• Total undergrad.: 30602 
• Total grad.: 7514 
• PhD: 2900 
• Publications/year (journals): 2023 
• Scholarships: 7521 
• Professors+lecturers: 2059 
• Other staff: 3137 
• Budget: R$955.479.298,00 

= 38116 

Founded: 1961 

Built area: 651796 m2 
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Technological Center – CTC 

360 Professors / lecturers 

120 Employees 

5100 Undergraduation students 

2000 Graduation students 

Departments 

Architecture and urbanism – ARQ 

Automation and Systems – DAS 

Civil Engineering – ECV 

Electrical Engineering – EEL 

Mechanical Engineering – EMC 

Production Engineering – EPS 

Chemical and Food Engineering – EQA 

Environmental Engineering – ENS 

Informatics and Statistics – INE 

Numbers 

49 Professors / lecturers 

13 Employees 

498 Undergraduation students 

145 Master students 

89 PhD students 



INEP

Power Electronics Institute – INEP 

Founded: 1979 as LAMEP 

Re-structured: 1994 as INEP 

Supervisor 
Prof. Denizar 

Technical 
staff 

Students 

2 

3 

94 

Administrative 
staff 

Master 
26 

PhD 
23 

Undergrad. 
41 

Postdoc 
4 

Professors 
Prof. Samir A. Mussa 
Prof. Marcelo L. Heldwein 
Prof. Telles B. Lazzarin 
Prof. Roberto F. Coelho 
 
Prof.  Gierri Waltrich 
Prof.  Arnaldo  J.  Perin 
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Tutorial outline 

• Part 1 – EVs infrastructure and required Power Electronics 

– EVs today 

– Power electronics systems for Evs 

– Introductions to battery systems for Evs, V2G and V2H 

– Recharge modes, stations and converters 

• Part 2 - Modeling and simulation of EVs and design of batteries 

– Battery modelling 

– Motor modelling 

– Vehicle modelling 

– Electric vehicle range modelling 

8 
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Charging stations 
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EV conditions 
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EV conditions 

1% line 
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EVs are more popular (but not there yet) 

18 
http://www.iea.org/topics/transport/subtopics/electricvehiclesinitiative/EVI_2014_Casebook.pdf 
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Electric vehicles 

 

19 
http://vancouver.ca/sustainability/documents/ElectricVehicleClassificationTable.pdf 
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Electric vehicles 

 

20 
http://vancouver.ca/sustainability/documents/ElectricVehicleClassificationTable.pdf 



INEP

Electric vehicles 

 

21 
http://www.dolcera.com/wiki/index.php?title=Image:EV_vechicle_types.jpg 
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EV classification 
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Power architectures 
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Electronic systems in na EV 
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Power Electronics in a PHEV 

 

25 
J. Gover, “A Tutorial on Hybrid Electric Vehicles: EV, HEV, PHEV and FCEV”. 
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Power Electronics in a PHEV 

 

26 
J. Gover, “A Tutorial on Hybrid Electric Vehicles: EV, HEV, PHEV and FCEV”. 

Typical power < 6 kW 
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Evolution of the powertrain inverter technology 

35 kW/l 6.3 kW/l 
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Evolution of the powertrain inverter technology 

NPT PT FS 
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Evolution of the powertrain inverter technology 
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Evolution of the powertrain inverter technology 
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Evolution of the powertrain inverter technology 
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In-wheel motor with integrated inverter 

32 Fonte: http://www.proteanelectric.com/ 
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Integrated inverter 

33 

Challenges: 

• Mechanical  conditions 

• Packaging and integration 
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Electric boat integrated drive 

• Integrated inverter 
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Electric boat integrated drive 

• Integrated cooling system 
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Electric boat integrated drive 

• Control / modulation board 
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Electric boat integrated drive 

• Assembly 
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Electric boat integrated drive 

• Assembly 
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Li-ion batteries 

39 
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Li-ion batteries 

40 
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Typical Li-ion cell (Voc x SoC) 

41 
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Battery packs 

42 
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DoD incluence on battery life 

43 
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Battery charge profiles 

44 
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Charging infrastructures 

45 

EVSE: Electric vehicle supply equipment 
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Tipos de instalação 

48 
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Tipos de instalação 

49 



INEP

Tipos de instalação 

50 
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Charging stations 

• Public station 
– Recharging infrastructure for use in public spaces with access allowed to 

more persons 
– Charge is to be permitted after identification or payment 

 
• Private station 

– Use in private spaces 
– Does not require identification 

51 
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Harmonics 

52 

IEC 61000-3-2:  Class A 
  Current ≤ 16 A per phase 
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Harmonics 

53 

IEC 61000-3-12:  Class A 
  16 A < Current ≤ 75 A per phase 
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Harmonics 

54 
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IEC 61851-1 Electric vehicle conductive charging system 

56 
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DC Fast Chargers 

57 
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DC Fast Charging Stations 
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DC Fast Charging Stations 

59 
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AC vs DC 

60 
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First Brazilian power grid 

• Rio de Janeiro Central Station 
• 1878 – D. Pedro II hired Thomas 

Edison company 

 

85 Fonte:  
http://www.theiet.org/about/libarc/archives/biographies/jablochkoff.cfm 

Fonte:  
http://pixii.com/gramme1.jpg 
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First Brazilian power grid 

86 Fonte:  
http://www.theiet.org/about/libarc/archives/biographies/jablochkoff.cfm 

Fonte:  
http://pixii.com/gramme1.jpg 

Stability:   
       Supply and demand balance ! 
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First Brazilian power grid 

87 Fonte:  
http://www.theiet.org/about/libarc/archives/biographies/jablochkoff.cfm 

Fonte:  
http://pixii.com/gramme1.jpg 

Stability:   
       Supply and demand balance ! 

First grid:   
       All was well known. 
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First Brazilian power grid 

88 Fonte:  
http://www.theiet.org/about/libarc/archives/biographies/jablochkoff.cfm 

Fonte:  
http://pixii.com/gramme1.jpg 

How about the Smart Grid? 

Stability:   
       Supply and demand balance ! 

First grid:   
       All was well known. 
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Grid voltage variation range 

• IEC 
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Grid frequency variation range 

• IEC 61000-2-2 
– ±1 Hz 

 
• ONS (Brazilian agency) 

98 
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Eletronics 

99 

Energy saving trust, “The ampere strikes back How consumer electronics are taking over the world,” 2007. 



INEP

 

Smart Grid electric functions 

100 
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Home Area Networks (HAN) 

101 
http://www.freescale.com/webapp/sps/site/overview.jsp?code=784_LPBBGREE
NBEE 
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Improving homes 

102 
http://www.advantech.com/solutions/eHome/scenario.asp?Category_ID=1-
EDZ11 
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EVs are more popular 

103 
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Vehicle-to-Grid (V2G) 

• To integrate EVs to the grid not only as loads, but as storage systems 
• Objective:  reduce EVs impact to the grid 

104 
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The Vehicle-to-Grid (V2G) concept 

• Components: 
– Batteries 
– BMS (Battery management systems) 
– Battery charger (ac-dc) 
– Inverter (dc-ac) 
– Controller 
– GPS 
– Measurement 

 
• Outside the vehicle: 

– Smart meter 
– Power grid 
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Vehicle-to-Grid (V2G) 

• Aggregator:  
– service provider that receives information and takes decisions 

106 
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Nissan’s home integrated storage 

107 
http://www.iea.org/topics/transport/subtopics/electricvehiclesinitiative/EVI_2014_Casebook.pdf 
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Analysis of different strategies to V2H 

a) Business-as-usual 
b) Local energy control 
c) Iterative global energy controller 

108 
Mets et al., “Optimizing Smart Energy Control Strategies forPlug-In Hybrid Electric Vehicle Charging,” 2010. 
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Analysis of different strategies to V2H 
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Mets et al., “Optimizing Smart Energy Control Strategies forPlug-In Hybrid Electric Vehicle Charging,” 2010. 
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Analysis of different strategies to V2H 
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Mets et al., “Optimizing Smart Energy Control Strategies forPlug-In Hybrid Electric Vehicle Charging,” 2010. 
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Analysis of different strategies to V2H 

 

111 
Mets et al., “Optimizing Smart Energy Control Strategies forPlug-In Hybrid Electric Vehicle Charging,” 2010. 
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Power Electronics for EV Charging Systems 

■  Level 1 Charging 
●  Single-Phase AC Connection 
●  On-Board Charger 
●  120 VAC, 16 A    1.92 kW 

► USA (SAE J1772 Definition) 
■  Level 2 Charging 

●  Single-Phase AC Connection 
●  On-Board Charger 
●  204 – 240 VAC, ≤ 80 A    19.2 kW 

■  Level 3 Charging 
●  DC Connection 
●  Three-Phase Off-Board Charger  
●  300 – 600 VDC, ≤ 80 A    240 kW 

► Europe On-Board Charger: 

●  Single-Phase AC Connection 
    230 VAC, 16 / 32 A    3.68 / 7.4 kW 
    230 VAC, 20 A    4.6 kW 
 
●  Three-Phase AC Connection 
    3 x 400 VAC, 16 / 32 A    11 / 22 kW 
    3 x 400 VAC, 63 A    44 kW 
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Power Electronics for EV Charging Systems 

●  Wide Voltage Range – Voltage Adaption 
●  Output Current Control 
●  Mains Sinusoidal Current Shaping 
●  Isolation of Mains and Battery (?) 
 
 

■  Basic Requirements 

■  Basic Topologies 

●  Non-Isolated 
 

●  Isolated Single-Stage  
 
●  Non- or Isolated Two-Stage 

Standard  
Solutions 
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Power Electronics for EV Charging Systems 

●  Wide Voltage Range – Voltage Adaption 
●  Output Current Control 
●  Mains Sinusoidal Current Shaping 
●  Isolation of Mains and Battery (?) 
 
 

■  Basic Requirements 

■  Basic Topologies 

●  Non-Isolated 
 

●  Isolated Single-Stage  
 
●  Non- or Isolated Two-Stage 

Standard  
Solutions 
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VSRs 

 

Delta-Switch VSR VSR 
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Topology 

• This topology was proposed and firstly operated in: 
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Capabilities 

• Reference [1] cites it as the most well suited rectifier for industrial 
applications where a 2-level boost type 3-phase rectifier is required 
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Applications 

• [3-4] WECS applications  
 

• [5] Aircraft application of the Delta-Switch Rectifier 
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Space vectors 
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Modulation Strategies 

• [5] SVM I: minimizes switching actions 
• [4] SVM II: minimizes conduction losses 
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Suboptimal Modulation Strategies 

• Derived from the optimal strategies and application dependent 
 

• Avoid current sector identification as in [11] 
 
 
 
 

• Improved THD 
 

• Increased losses 
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Suboptimal Modulation Strategies 

• Derived from the optimal strategies and application dependent 
 

• Avoid current sector identification as in [11] 
 
 
 
 

• Improved THD 
 

• Increased losses, but, hopefully, not too much! 
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Novel Suboptimal Modulation Strategies 
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Novel Suboptimal Modulation Strategies 
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Carrier-Based Delta-Switch Rectifier Modulation 

• Implementation: 
 
 
 
 
 
 

 

SVM I / SVM II 

mSVM I / mSVM II 
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Carrier-Based Delta-Switch Rectifier Modulation 

• Implementation: 
 
 
 
 
 
 

 

SVM I / 
SVM II 

mSVM I / 
mSVM II 
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Carrier-Based Delta-Switch Rectifier Modulation 

• M=0.75  
• δi=0 

SVM I & SVM II mSVM I & mSVM II 
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Carrier-Based Delta-Switch Rectifier Modulation 

• Analytical losses calculation 
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Delta-Switch Rectifier Currents 

SVM I 

mSVM I 

SVM II 

mSVM II 
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Delta-Switch Rectifier Current Efforts 

• Current efforts 
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Delta-Switch Rectifier Current Efforts 

M = 0.4 

M = 0.8 
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Experimental Results 

• Employed current control strategy (equivalent to ZADC)  in [16] 
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Experimental Results 

SVM I – Current THD 3.16 % SVM II – Current THD 3.23 % 



INEP

Experimental Results 

mSVM I – Current THD 3.84 % mSVM II – Current THD 1.54 % 
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Experimental Results 

• Results @ 200 V (dc) / 2 kW 
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Multi-state switching cells based 3-phase rectifiers 
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MLMSR 

• Space vector analysis  
 
– Leg voltage: 
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MLMSR 

• N=4, 217 vectors in αβ; 
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MLMSR 

• Input voltages space 
– Current direction enforces restrictions 

• 8 unit sub-cubes 
 

• Example for: 
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Control oriented models 

• Current control: 
 
 
 
 

• Output voltage control: 
 
 
 
 

• Partial dc-link voltage balance control:  
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MLMSR Control strategy 

• Similar to 2-level VSR control 
• Zero-axis signal controls the dc-offset to balance the dc-link 
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MLMSR modulation 

• Space vector 
– Highly flexible 
– Computacionally demanding 
– Freedom: redundancies 

 
 

• Carrier based 
– Simple 
– Near SVM perfomance is possible 
– Freedom: zero-axis signal 

 
 

 

 M. S. Ortmann, S. A. Mussa, e M. L. Heldwein, Evaluation of carrier-based PWM 
strategies for multi-state switching cells-based multilevel three-phase rectifiers, em 2011 
Brazilian Power Electro-nics Conference (COBEP), pp. 903-910. 
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MLMSR carrier-based modulation 

N=2 

N=3 
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MLMSR carrier-based modulation 

• SPWM 
– Simpler 
– M ≤ 1,15  
– z = 0 
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MLMSR carrier-based modulation 

• SV2L 
– 2-level SVM equivalent 
– M ≤ 1,15 
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MLMSR carrier-based modulation 

• DPWM 
– Reduced switching losses 
– M ≤ 1,15 
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MLMSR carrier-based modulation 

• STHI 
– Minimizes dc-link LF oscillations 
– M ≤ 1,15 
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MLMSR carrier-based modulation comparison 

– Input current ripple 
 
 
 

 
– Common mode voltage 

 
 

– IPT magnetizing voltages 
 
 

– Mid-point current 
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MLMSR carrier-based modulation comparison 

• N=2 e N=3 
 
 

SV2L SPWM 
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MLMSR carrier-based modulation comparison 

• N=2 e N=3 
 
 

STHI DPWM 
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MLMSR carrier-based modulation comparison 
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MLMSR example 

• PEBBs 
• Heatsink-less 

 M. S. Ortmann, S. A. Mussa, e M. L. Heldwein,  Multilevel Multistate Switching Cells PEBBs as the Basis for the 
Implementation of Advanced Rectifers, The Applied Power Electronics Conference and Exposition APEC 2012. 
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PEBB 
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PEBB 

• 6 layers PCB – 180mm x 40,5mm: 
• Integrated MIPT 

– 12 turns 
– J = 1980 A/cm2; 

• Power supply: 
– 12V, 5V; 

 

 
 
 
 
 
 
 
 

— Digital inputs:  
• S1,S2,S3,S4; 

— Mosfets CoolMos 600 V, 20 A; 
— Diodes Sic 600V  10 A; 
— Diodes Si, 800 V, 8 A; 
— Drivers e aux. power; 
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MLMSR N=4 

SPWM 

SV2L STHI 

DPWM 
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MLMSR N=4 

SPWM 

STHI 

DPWM 

SV2L 

Input 
current 

Input  
voltage 

 

 

Converter 
voltage 

 

 

 

 

Input 
current 

Input  
voltage 

Converter 
voltage 
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MLMSR N=4 

SPWM 

STHI 

DPWM 

SV2L 

Voltage 
MIPT - Base 

Voltage 
 MITP - PEBB 

 

 

Inductor 
voltage  

Inductor  
current 
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MLMSR N=4 

SPWM SV2L 

Converter 
line 
voltages 

Converter 
phase 
voltages 

 

 

Common 
mode 
voltage 

 

Common 
mode 
current 
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MLMSR N=4 

STHI DPWM 

 

 

 

 

Converter 
line 
voltages 

Converter 
phase 
voltages 

Common 
mode 
voltage 

Common 
mode 
current 
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MLMSR MIPT behavior 

• Distribuição das correntes nos enrolamentos dos MIPTS: 
 
 

0,83% 

7,0% 

7,9% 
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MLMSR N=4 

• Transient load step 

40% to 80% Po 80% to 40% Po 
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MLMSR N=4 

• Dc-link unbalance 

Balance control off Balance control on 
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MLMSR N=4 

• Efficiency 
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MLMSR N=4 

•  THDi 
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MLMSR N=4 

• Comparison 
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Comparison 
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Comparison 
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Dc-dc converters for EV battery chargers 

168 
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Power Electronics for EV Charging Systems 

●  Wide Voltage Range – Voltage Adaption 
●  Output Current Control 
●  Mains Sinusoidal Current Shaping 
●  Isolation of Mains and Battery (?) 
 
 

■  Basic Requirements 

■  Basic Topologies 

●  Non-Isolated 
 

●  Isolated Single-Stage  
 
●  Non- or Isolated Two-Stage 

Standard  
Solutions 
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Insulated dc-dc converters 

170 
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Insulated dc-dc converters 

171 
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Insulated resonant dc-dc converters 
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Insulated resonant dc-dc converters 

173 
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Most popular EV topologies 
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Phase-shifted Full-bridge ZVS 
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Phase-shifted Full-bridge ZVS 
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Phase-shifted Full-bridge ZVS 
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Phase-shifted Full-bridge ZVS 
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Phase-shifted Full-bridge ZVS 
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Phase-shifted Full-bridge ZVS 
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Phase-shifted Full-bridge ZVS 
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Phase-shifted Full-bridge ZVS 
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Phase-shifted Full-bridge ZVS 
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ZVS on S3-S4 (legging leg) 
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ZVS on S1-S2 (leading leg) 

185 
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Phase-shifted Full-bridge ZVS 

186 
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• Low load ZVS is hard to achieve and depends on Llk 

• If Llk is large,  duty-cycle is lost 
• Maximize Ns/Np reduces rectifier voltages, but requires higher Llk 

• There is circulating current 
• ZVS occurs at the primary, but there are oscillations at the secondary 

(reverse recovery) 

 

Phase-shifted Full-bridge ZVS 

187 
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LLC resonant converter 

188 
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LLC resonant converter 

• Equivalent circuit 

189 
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LLC resonant converter 

• Primary-side equivalent circuit 
 
 
 
 
 
 

• Secondarry- side equivalent circuit 
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LLC resonant converter 

• Primary-side equivalent circuit 
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LLC resonant converter 

• Dc gain 

192 
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LLC resonant converter 

• Gain 

193 
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LLC resonant converter 

• Gain 

194 

Região de boa regulação 
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LLC resonant converter 

195 

Maximum gain points 

SRC-like operation 

PRC-like operation 
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LLC resonant converter 

196 
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LLC resonant converter 

• ZVS operation is preferrable 
 
 
 
 
 
 
 
 
 
 
 

• The MOSFET body-diode suffers reverse recovery at the capacitive region 

197 
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LLC resonant converter 

• Ressonance point operation 

198 
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LLC resonant converter 

• Below resonance operation 
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LLC resonant converter 

• Below resonance operation 

200 
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LLC resonant converter 

• Above resonance operation 

201 
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LLC resonant converter 

• Above resonance operation 

202 



INEP

• Below resonance operation leaads to soft-switching at the secondary 
switches, but circulating current rises 

• Increasing m leads to higher fs variation 
• Reducing m reduces LM and increases the circulating current and 

increases Pcond e Psw 

• The product m.Q is fix when LM and fs  is fixed 
• Reduce m and increase Q reduces fs variation, but reduces gain  
• Lr and Cr can vary, but low Cr values result in low impedance and higher 

short-circuit current and, thus, higher fs  

LLC resonant converter 

203 
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Power flow in an EV 

204 
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Power flow in an EV 

205 
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Power Electronics for EV Charging Systems 

●  Wide Voltage Range – Voltage Adaption 
●  Output Current Control 
●  Mains Sinusoidal Current Shaping 
●  Isolation of Mains and Battery (?) 
 
 

■  Basic Requirements 

■  Basic Topologies 

●  Non-Isolated 
 

●  Isolated Single-Stage  
 
●  Non- or Isolated Two-Stage 

Standard  
Solutions 
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●  Boost Type 
●    Buck Type 

VB ...........  DC Output Voltage 
UN,ll,rms ... RMS Value of Grid Line-to-Line Voltage 

Operating Range of High Power Factor Grid Interfaces 

VB 
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Conventional 3-Ph Current Source AC-DC Systems 

208 208 Thursday, 11/04/2013 

Hybrid 3rd Harmonic Injection Current Source Rectifier: 

Swiss Rectifier I: Six-Switch Current Source Rectifier: 
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Modular Multilevel Current Source Converters 

• Conventional Buck-type PFC Rectifier 

209 209 Thiago Soeiro Thursday, 11/04/2013 
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Conventional 3-Level Modular 5-Level 
0

200
ua ub uc

ia ib ic

iDC

0

-64

-32

uDC

ir,aia

100

-100

-200

64

32

0

-64

-32

64

32

0

200
ua ub uc

ia ib ic

iDC

0

-64

-32

uDC

ir,a

ia

100

-100

-200

64

32

0

-64

-32

64

32

iL+,1

iL+,2



INEP

Modular Multilevel Current Source Converters 

• Swiss Rectifier (SR) I 

211 211 Thiago Soeiro Thursday, 11/04/2013 

a

b

c

ia
S1a S1b

S2a S2b

S3a S3b

DN+

DN-

CF,i

ib

ic

ir,a

ir,b

ir,c

ub
+
-ua+

-

uc

-

uDCC

+

-

S+,1

L+,1

L+,n

L-,1

L-,n

S+,n

S-,n

S-,1

iDC

DF+,1

DF-,1

DF+,n

DF-,n

i+,1

i+,2

i+,n

i-,1

i-,2

i-,n

+

iS+

iS-

iy

δ+

+-

PWM1
00

+-S+,1

PWM2

+

- uDC
kU(s)+-

kI(s)

i+,1

-
kI(s)

i+,2

+

+

+

+

+

uDC*
uabc

1800

S+,2

Eq. (7)

δ+

Logic & Pulses
Mapping

(cf. Fig. 4)

S1a/b
S2a/b
S3a/b

uabc

+-

PWM1

0

0

+-

S-,1

PWM2

+-
kI(s)

i-,2

+

+
+

+

uabc

180

0

S-,2

Eq. (8)

δ-

uDC*

Feedback Control: (2N+1)-Level Unidirectional Structure: 



INEP

Modular Multilevel Current Source Converters 

• Swiss Rectifier (SR) II 

212 212 Thiago Soeiro Thursday, 11/04/2013 

Feedback Control: (2N+1)-Level Unidirectional Structure: 
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Conventional 3-Level Modular 5-Level 
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Modular Multilevel Current Source Converters 
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(2N+1)-Level Unidir. based on 3-switch: 
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(2N+1)-Level Structure: 
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3-Level Structure: 12 Fast Mosfets 

(2N+1)-Level  6-switch Buck-type Rectifier: 

Bidirectional Modular Multilevel Current Source Converters 
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5-Level Structure: 24 Fast Mosfets 

7-Level Structure: 32 Fast Mosfets 

3-Level Structure: 4 Fast + 12 Low Freq. Mosfets 

5-Level Structure: 8 Fast + 12 Low Freq. Mosfets 

7-Level Structure: 12 Fast + 12 Low Freq. Mosfets 
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Experimental Results 

Input phase voltage ua,b,c 
Mains frequency fN 
Switching frequency fP 
Rated output power P 
Output capacitor C 
Input capacitor CF,i 
Input inductor LF,i 
DC inductor L 

127 V rms 
60 Hz 
20 kHz 
2.5 kW 
470 µF 
10 µF 
80 µH 
125 µH 

• 5-Level Current Source Rectifier 
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• 5-Level Current Source Rectifier 
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Green charging stations 
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Green charging stations 
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Electric vehicle modelling  
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• Battery modelling 
• Motor modelling 
• Vehicle modelling 
• Electric vehicle range modelling 

Source: Larminie, J.; Lowry, J.”Electric Vehicle Technology Explained”. John Wiley & 
Sons Ltd, England,2003. 



INEP

Battery modelling  
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Battery modelling  
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When a current is given out, the voltage will fall; when the battery is 
being charged, the voltage will rise.  

Open circuit voltage 

Obs.: A good quality 12 V, 25 Amphour lead 
acid battery will typically have an internal 
resistance of about 0.005 ohms. 

However, the open circuit voltage E is 
not in fact constant. The voltage is also 
affected by the ‘state of charge’, and 
other factors such as temperature. 
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Capacity is not constant.  

Capacity is affected if the charge 
is removed more quickly, or 
more slowly. 
 

Ex. of notation:  
 
C= 42 Ah → 42 A (charge or discharged in one hour) 
2C              → 84 A (charge or discharged) 
0.4C         → 16.8 A (charge or discharged) 

Battery modelling  
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Battery modelling  
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Energy density (Wh/m3) is the amount of electrical energy stored per cubic 
meter of battery volume. 

241 

Energy storage  

Energy in Watthours = Voltage × Amphours or Energy = V × C 
Obs.: Both, V and C, are reduced if the current is increased and the battery 
is drained quickly. 

Specific energy 
Specific energy (Wh/kg) is the amount of electrical energy stored for every 
kilogram of battery mass. 

Energy density 

Specific power 
Specific power (W/kg) is the amount of power obtained per kilogram of 
battery. 

Battery modelling  

MATLAB: Ragone_plot.m 
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Battery modelling  
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Batteries types 
 

• Lead acid – low cost, low specific energy   
• NiCad – low cost 
• NiMH – cadmium free 
• Sodium – high temperature used in larger systems 
• Li-ion – high specific power 
• Zinc-air – high specific energy, negatives electrodes should be replace 

after it is charged. 

Battery modelling  
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Equivalent circuit 

Do not explain the battery 
dynamics! 

This model represents better the 
dynamic behaviour of a battery. 

Battery modelling  
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Equivalent circuit 

Lead acid battery: 

Battery modelling  
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Equivalent circuit 

NiCad battery (obtained by linear regression): 

Battery modelling  
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Equivalent circuit 

Battery resistance: 
 
Lead acid resistance:  [ ]

10

0.022 o
PbR n cells

C
= Ω

10 10C capacity for h discharge=

NiCad resistance:  [ ]
10

0.06 o
NiCadR n cells

C
= Ω

Battery modelling  
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Peukert Model 

Drawing 1A for 10 hours does not take the same charge from a battery as 
running it at 10A for 1 hour, therefore, it is necessary to determine a method 
to define a capacity of a battery. 
 
The starting point is finding the Peukert capacity: 

 k
PC I T=

CP is found by the nominal parameters, and k is a constant (typically about 
1.2 for a lead acid battery)  called Peukert coefficient. 

Battery modelling  
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Peukert Model 

Example: Suppose a battery has a nominal capacity of 40 Ah at the 5 h rate. 
This means that it has a capacity of 40 Ah if discharged at a current of:  

40 8
5

I A= =

if k = 1.2 then the Peukert capacity is   

1.28 5 60.6PC Ah= × =

now it is possible to find the time that the battery will last at any current I.   

P
k

CT
I

=

Battery modelling  
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Peukert Model 

(1 k)

predicted

P
predicted k

predicted P

C I T
CC I
I

C C I −

= ×

= ×

=

1.107

(1 ) (1 1.107

10

)

4.2

1.107 (Lead acid)

4.2 10 4

49

4
10

9

2

k
P

P
k

Predicted P P

A

k
C I T
C Ah
C C

C AhI
T h

I C I− −

=

=

=

= × =

= × = ×

= =

Example 

Battery modelling  

MATLAB: Figure_2_14.m 
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Time step                                                  →   
 
Charge removed in one step            →  
 
Total charge removed the battery → 
 
 

Total charge supplied for a load      → 
 
Depth-of-discharge                              →  
 
Open circuit voltage                             →   

tδ

kt Iδ ×

[ ]1 3600

k

n n
t ICR CR Ahδ

+

×
= +

[ ]1 3600n n
t ICS CS Ahδ

+

×
= +

n
n

p

CRDoD
C

=

( )2.15 0.15oE n cells DoD= × − ×

Battery modelling  
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Theoretical results                             Experimental results  

Battery modelling  

MATLAB: Figure_2_15.m 
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Power supplied for the load          → 
 
 
Current supplied for the load       → 
 
 
 

( ) 2P V I E IR I EI RI= × = − = −

2 4
2

E E RPI
R

− −
=

• Graph of constant power 
discharge of a lead acid battery 
at 5000 W.  
 

• The nominal ratings of the 
battery are 120 V (10 batteries), 
50 Ah. 
 

• The battery is "dead" if the 
DoD exceeds 99% 

Battery modelling  

MATLAB: Figure_2_17.m 
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If the battery is being charged: 
  
 
Terminal voltage                                  → 
 
 
Power drained from the load          → 
 
 
Current drained from the load       → 
 
 
Charged removed                                → 
 
 

( ) 2P V I E IR I EI RI= × = + = +

2 4
2

E E RPI
R

− + +
=

V E IR= +

[ ]1 3600

k

n n
t ICR CR Ahδ

+

×
= −

Battery modelling  
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Calculating the Peukert Coefficient 

The two different ratings give two different rated currents: 

1 2
1 2

1 2

C CI I
T T

= =and

1 1 2 2

1 1 2 2

1 2

2 1

2 1

1 2

log log
log I log I

k k
P P

k k

k

C I T C I T
I T I T

I T
I T

T Tk

= × = ×

=

 
= 

 
−

=
−

and

Battery modelling  
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Calculating the Peukert Coefficient 

Example: 

1
1 2

1

42 33.64.2 33.6
10 1

CI A I A
T

= = = = =and

log1 log10 1.107
log 4.2 33.6

k −
= =

−

Battery modelling  
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Approximate battery sizing 

The vehicle fuel consumption is normally known. 
  
Diesel car example 
Fuel consumption: 18 km/L 
Diesel specific energy: 40 kWh/kg  
Motor transmission efficiency: 10% 
 
Fuel consumed in a distance of 180 km: 10 L ≈ 11 kg 
Energy consumed in 180 km: 40 kWh/kg ×11 kg =440 kWh 
Energy delivered in the roads: 440 kWh×0.1= 44 kWh 
Energy required for a electric vehicle: 
 
 
 
 

Energydelivered in the roads 44 62.8
efficiency (eletric motor+transmission 70%) 0.7EV

kWhEnergy kWh= = =
≈

Battery modelling  
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Approximate battery sizing 

The mass of different types of battery for different distances travelled are 
shown in Table 2.11, assuming an electric motor/drive efficiency of 70%. 

Battery modelling  
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Motor modelling   

259 



INEP 260 

Motor modelling  
Permanent magnetic DC motor 
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Permanent magnetic DC motor 

Motor modelling  
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Permanent magnetic DC motor 

Back EMF: 

( )

2

b

b

b m

d BAdE BLv
dt dt

v r
E nBLr
E K

ω
ω

ω

Φ
= = =

=
=
= Φ ⋅

(2 )

2

.
m

m

F iL B
BA B Lr

F r
nBILr

n I
K I

K

τ
τ
τ
τ

= ×
Φ = =

= ×
=
= Φ
= Φ ⋅

∝

  

  

o o

or

n polos, n turns, etc

Torque: 

Motor modelling  
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Permanent magnetic DC motor 

( )2

s b s m

a a a a

ms m
m

a a

E E E KVI
R R R R

KE KK I
R R

ω

τ ω

− Φ
= = = −

ΦΦ
= Φ = −

Motor modelling  



INEP 264 

Permanent magnetic DC motor 

60
2

0.136
m m

m

E rad E RPM
K s K

K

ω
π

= =
Φ Φ

Φ =

For a DC Lynch motor: 
 
Motor speed = 70 rpm/V 
Armature resistance = 0.016Ω 

Motor modelling  

( )2

205 1.16

ms m
m

a a

KE KK I
R R

τ ω

τ ω

ΦΦ
= Φ = −

= −

If the motor is running with 24 V: 
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Permanent magnetic DC motor 

At zero speed: 
 
 
At zero speed there is no back EMF, so: 
 
 
The current is too large and should be limited. In this example it will be limited 
in 250 A. Therefore, the maximum toque is: 
 
 
 
 
 
 
These values are typical for 5 kW dc motors. 
 
 
 

Motor modelling  

205 1.16 205 1.16(0) 205Nmτ ω= − = − =

24 1500
0.016

s b s

a a a

E E EVI A
R R R

−
= = = = =

0.136 250 34mK I Nmτ = Φ = × =
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DC motor efficiency 

Copper losses                                      =  kcτ2        →  P=I2R,  I α τ 
Iron losses                                             =  ki ω     
Friction and windage losses          =  kωω3 

Constant losses                                   =  C    

2 3
o

m
i c i

P
P k k k Cϖ

τωη
τω τ ω ω

= =
+ + + +

Motor modelling  

MATLAB: motoreff.m 
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Motor modelling  
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Vehicle modelling 
   

268 



INEP 269 

Tractive force 

Vehicle modelling 

The electric vehicle should: 
 
• overcome the rolling resistance 
• overcome the aerodynamic drag 
• provide the force needed to overcome the component of the vehicle’s 

weight acting down the slope 
• accelerate the vehicle, if the velocity is not constant 
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Tractive force 
Rolling resistance force         = Frr 
Aerodynamic drag                   = Fad 
Hill climbing force                    = Fhc 
Linear acceleration force      = Fla 
Angular acceleration force   = Fωa 
Total tractive effort                 = Fte 

Vehicle modelling 
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Tractive force 

Rolling resistance force       →   Frr  = µrrmg 
 
 
Typical values: µrr= 0.015 for a radial ply tyre 
                               µrr= 0.005 for tyre developed especially for electric vehicles. 
 
 
Aerodynamic drag               →   Fad = 0.5ρACdυ2 
 

ρ  = density of the air                          Typical values for Cd: 
A  = frontal area                                    Conventional cars:      Cd=0.3       
υ   = speed                                               Electric vehicle:            Cd=0.19 
Cd  = drag coefficient                           Motorcycle and bus:  Cd=0.7    

Vehicle modelling 



INEP 272 

Tractive force 

Hill climbing force                              →     Fhc  = mg sin(ψ) 
 
Linear acceleration force                →     Fla = ma 
 
 

Angular acceleration force             →     due to the rotating parts 

te

te

F r
F r
G
GF
r

τ

τ

τ

= ×

=

=

  

Vehicle modelling 
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Tractive force 

v
r

ω =             Angular speed at the axle                              → 
 
 
             Angular speed at the motor                         → 
 
 
             Motor angular acceleration                          →    
 
 
             Torque required for this acceleration        →    
 
 
              Angular acceleration force                           →       

vG
r

ω =

aG
r

ω =

aI IG
r

τ ω= =

2

a
G GF T I a
r rω

 = =  
 

Vehicle modelling 
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Tractive force 

It will quite often turn out that the moment of inertia of the motor will not be 
known.  
 
In such cases a reasonable approximation is to simply increase the mass by 5% 
in Fla and to ignore the Fωa term. 
 
 
Total tractive force           →   
 
 
We should note that Fla and Fωa will be negative if the vehicle is slowing down, 
and that Fhc will be negative if it is going downhill.   

te rr ad hc la aF F F F F Fω= + + + +

Vehicle modelling 
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Modelling Vehicle Acceleration 

 For ω < ωc    or     v < (r/G) ωc   then     τ = τmax 
 
 For ω ≥ ωc    or     v ≥ (r/G) ωc   then     τ = τo- kω 
 
 For a vehicle on level ground, and air density of 1.25 kg.m-3 : 

2
2

20.625te rr d
g

GF mg AC v ma I a
r

µ
η

= + + +

te
G dvF a
r dt
τ= =

2
2

20.625rr d
g

G G dvmg AC v m I
r r dt
τ µ

η
 

= + + +  
 

Vehicle modelling 
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Modelling the acceleration of an electric scooter: 
 
 

Vehicle modelling 

2013 Peugeot Vivacity E 



INEP 277 

Vehicle modelling 
Modelling the acceleration of an electric scooter: 

Characteristics: 

•     Electric Scooter mass = 115 kg + 70 kg (pilot) = 185 kg 
•     The moment of inertia of the motor is not known, so m is increased by 
5%, therefore, Electric Scooter mass = 194 kg 
•     The drag coefficient (Cd) is estimated as 0.75 
•     The frontal area of vehicle and rider = 0.6 m2 
•     Coefficient of the tire rolling resistance μrr = 0.007 
•     The motor ratio belt = 2:1, and wheel diameter= 42 cm, thus, G = 2  
•     Gear system efficiency (ηg) = 98% 
•     The motor is an 18V Lynch type motor 
•      Motor speed = 70 rpm/V 
•      Armature resistance = 0.016 Ω 
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Vehicle modelling 
Modelling the acceleration of an electric scooter: 

Torque equation: 
 
 

( ) ( )2 20.13618 0.136
0.016 0.016

153 1.16

ms m
m

a a

KE KK I
R R

τ ω ω

τ ω

ΦΦ ×
= Φ = − = −

= −

60 60 1 0.136
2 2 70m

EK
RPMπ π

Φ = = =

The current will be limited in 250A, therefore, the maximum torque is: 
 
 0.136 250 34mK I Nmτ = Φ = × =
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Vehicle modelling 
Modelling the acceleration of an electric scooter: 

Critical motor speed : 
 
 

34 153 1.16
153 34 103

1.16
rad

s

ω

ω

= −
−

= =
For constant torque: 
 
 2

2
2

2

2

2

0.625

2 0.98 34 0.007 185 9.8 0.625 0.6 0.75 194
0.21

317 12.7 0.281 194

1.57 0.00145

g rr d
g

G G dvmg AC v m I
r r dt

dvv
dt

dvv
dt

dv v
dt

η τ µ
η

 
= + + +  

 

× × = × × + × × +

= + +

= −
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Permanent magnetic DC motor 

Vehicle modelling 
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Vehicle modelling 
Modelling the acceleration of an electric scooter: 

This equation holds until the torque begins to fall when, ω = ωc = 103 rad/s, which 
corresponds to 103 × 0.21/2 = 10.8 m/s. After this point the torque is governed by 
: 
 
 

2
2

2

2

2

2

153 1.16 0.625

2 20.98 153 1.16 0.007 185 9.8 0.625 0.6 0.75 194
0.21 0.21

1428 103 12.7 0.281 194

7.3 0.53 0.00145

rr d
g

G dvmg AC v m I
r dt

dvv v
dt

dvv v
dt

dv v v
dt

ω µ
η

 
− = + + +  

 
 × × − = × × + × × + 
 

− = + +

= − −
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Vehicle modelling 
Modelling the acceleration of an electric scooter: 

The derivative of v is simply the difference between consecutive values of v 
divided by the time step given by : 

21 1.57 0.00145n nv v v
t

+ −
= −

∂

( )2
1 1.57 0.00145n n nv v t v+ = + ∂ × −

Constant torque: 

After critical speed: ( )2
1 7.30 0.53 0.00145n n n nv v t v v+ = + ∂ × − −

MATLAB: ScootA.m 
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Vehicle modelling 
Modelling the acceleration of an electric scooter: 
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Full power (WOT) acceleration of electric scooter

Peugeot electric scooter: 
Maximum speed: 45 kph 
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Vehicle modelling 
Modelling the acceleration of an electric scooter: 
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Peugeot electric scooter: 
• 10m from standing start time, 3.2 s 
• 100m from standing start time, 12 s 
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Modelling the acceleration of a small car: 
 
 

Vehicle modelling 

GM EV1  
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Vehicle modelling 
Modelling the acceleration of a small car: 
Manufacturer General Motors 

Also called GM EV1, Saturn EV1 

Production 1996–1999 (1,117 units) 
1997 Model Year: 660 Gen I units 
1999 Model Year: 457 Gen II units 

Body and chassis 

Class Electric subcompact car 

Body style 2-seat, 2-door coupé 

Layout Transverse front-motor, front-wheel drive 

Powertrain 

Electric motor three-phase Alternating current Induction motor with IGBT power inverter 
137 bhp (102 kW) at 7000 rpm 
110 lb·ft (149 N·m) at 0–7000 rpm 

Transmission Single-speed reduction integrated with motor and differential 

Plug-in charging 6.6 kW Magne Charge inductive converter 

Dimensions 

Wheelbase 98.9 in (2,512 mm) 

Length 169.7 in (4,310 mm)[1] 

Width 69.5 in (1,765 mm)[2] 

Height 50.5 in (1,283 mm) 

Curb weight 3,086 lb (1,400 kg) 
with Lead-acid batteries 
2,908 lb (1,319 kg) 
with NiMH batteries 

Chronology 

Predecessor GM Impact (prototype) 

https://en.wikipedia.org/wiki/General_Motors�
https://en.wikipedia.org/wiki/Saturn_Corporation�
https://en.wikipedia.org/wiki/Car_classification�
https://en.wikipedia.org/wiki/Electric_car�
https://en.wikipedia.org/wiki/Subcompact_car�
https://en.wikipedia.org/wiki/Car_classification�
https://en.wikipedia.org/wiki/Coup%C3%A9�
https://en.wikipedia.org/wiki/Automobile_layout�
https://en.wikipedia.org/wiki/Front-engine,_front-wheel-drive_layout�
https://en.wikipedia.org/wiki/Electric_motor�
https://en.wikipedia.org/wiki/Three-phase�
https://en.wikipedia.org/wiki/Alternating_current�
https://en.wikipedia.org/wiki/Induction_motor�
https://en.wikipedia.org/wiki/Insulated-gate_bipolar_transistor�
https://en.wikipedia.org/wiki/Power_inverter�
https://en.wikipedia.org/wiki/Transmission_(mechanics)�
https://en.wikipedia.org/wiki/Charging_station�
https://en.wikipedia.org/wiki/Magne_Charge�
https://en.wikipedia.org/wiki/Wheelbase�
https://en.wikipedia.org/wiki/General_Motors_EV1�
https://en.wikipedia.org/wiki/General_Motors_EV1�
https://en.wikipedia.org/wiki/Curb_weight�
https://en.wikipedia.org/wiki/Lead%E2%80%93acid_battery�
https://en.wikipedia.org/wiki/Nickel%E2%80%93metal_hydride_battery�
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Vehicle modelling 
Modelling the acceleration of a small car: 

Characteristics: 

•     Vehicle mass = 1400 kg + 140 kg (driver + passenger) = 1540 kg 

•     The moment of inertia of the motor is not known, so m is increased by 1.3%, 
therefore, the total vehicle mass = 1560 kg 

•     An ultra-low drag coefficient (Cd) of 0.19 

•     The frontal area of vehicle = 1.8 m2 

•     Very low Coefficient of rolling resistance μrr = 0.0048 

•     Variable frequency induction motors, operating at nearly 12000 rpm (maximum)  

•     The gear ratio = 11:1, thus, G=11; and tyre radius = 30 cm 

•     Gear system efficiency (ηg) = 95% 

•     Motor specification: Tmax = 140 Nm and ωc = 733 rad/s note this means T = Tmax 
until v = 19.8 m/s (= 71.3 kph) 
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Vehicle modelling 
Modelling the acceleration of a small car: 

•     Motor specification: Tmax = 140 Nm and ωc = 733 rad/s note this means T = Tmax 
until v = 19.8 m/s (= 71.3 kph) 
 

For constant torque: 
 
 

2
2

2

2

2

0.625

11 0.95 140 72.4 0.214 1560
0.3

3.11 0.000137

g rr d
g

G G dvmg AC v m I
r r dt

dvv
dt

dv v
dt

η τ µ
η

 
= + + +  

 

× × = + +

= −
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Vehicle modelling 
Modelling the acceleration of a small car: 

Above 19.8 m/s the motor operates at a constant 102 kW 

102000 102000 2756
11 37
0.3

P PT G v vv v
r

ω
= = = = =

×

2

2

2

2756 72.4 0.214 1560

96873.4 72.4 0.214 1560

62.1 0.046 0.000137

g
G dvv
r v dt

dvv
v dt

dv v
dt v

η = + +

= + +

= − −
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Vehicle modelling 

The derivative of v is simply the difference between consecutive values of v 
divided by the time step given by : 

( )2
1 3.11 0.000137n n nv v t v+ = + ∂ −Constant torque: 

After critical speed: 2
1

62.1 0.046 0.000137n n n
n

v v t v
v+

 
= + ∂ − − 

 

MATLAB: GMEV1.m 

Modelling the acceleration of a small car: 
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Vehicle modelling 
Modelling the acceleration of a small car: 
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Full power (WOT) acceleration of GM EV1 electric car

GM EV1 : from zero to 60 mph (96 kph), EV1 takes 9 s. 
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Electric vehicle range modelling 

Well know driving cycle from Los Angeles (LA-4), called, Federal Urban 
Driving Schedule (FUDS), are used for emission testing by the United States 
Environmental Protection Agency.  





constant speed at level ground
EV tests

realistic driving patterns(drivingcycles)

MATLAB: fuds.m 
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Electric vehicle range modelling 
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Federal Urban Driving Schedule (FUDS) 
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Electric vehicle range modelling 
Simplified Federal Urban Driving Schedule (SFUDS) 
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MATLAB: sfuds.m 
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Electric vehicle range modelling 
European urban driving schedule - ECE-15 
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MATLAB: ciclo.m 
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Electric vehicle range modelling 
European driving cycle (ECE-47) for emission testing of mopeds and 
motorcycles with engine capacity less than 50 cm3, also used for electric 
scooters. MATLAB: ECE47.m 
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Electric vehicle range modelling 
Out-of-town or highway driving:  
 
FHDS = Federal highway driving schedule   
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Electric vehicle range modelling 
Range modelling of battery electric vehicles 

To predict the range, the energy required to move the 

vehicle for each second of the driving cycle is 

calculated, and the effect of this energy drain is 

calculated. The process is repeated until the battery is 

flat. It is important to remember that if we use one-

second time intervals, then the power and the energy 

consumed are equal. 
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Electric vehicle range modelling 
Range modelling of battery electric vehicles 

dUP
dt

=

P T ω= ⋅
v rω= ⋅

( )P F r ω= ⋅

dθ

r

dx

dxd
r

θ =

1d dx
dt r dt
θ
=

1 v
r

ω =

( )d F x dxP F
dt dt
⋅

= =

P Fv=
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Electric vehicle range modelling 
Range modelling of battery electric vehicles 

te rr ad hc la aF F F F F Fω= + + + +

Energy required each second      → 
 
                                               where,   

te teP F v= ⋅
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Electric vehicle range modelling 
Range modelling of battery electric vehicles 
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Start 

Use vn+1 and vn  to find the acceleration 
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Rolling resistance force       →       
Aerodynamic drag                 → 
Hill climbing force                  → 
Linear acceleration force    →   
Angular acceleration force → 
Total tractive effort                

te rr ad hc la aF F F F F Fω= + + + +

laF ma=
sin( )hcF mg ψ=

( )2/aF I G r aω =

rr rrF mgµ=
20.5ad dF AC vρ=

te teP F v= ⋅

_ /mot out te gP P η=

_/ & /mot outv r T Pω ω= =

2 3
o

m
i c i

P
P k k k Cϖ

τωη
τω τ ω ω

= =
+ + + +

Start 

Use vn+1 and vn  to find the acceleration 

Using a and v, calculate Fte and Pte 

Calculate the motor power 

Calculate motor angular speed and toque 

Find the motor efficiency 
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_bat mot in acP P P= +

2 4
2

E E RPI
R

− −
=

Where E depend of the battery type, for 
instance: 
 
• Lead acid battery: 

 
 

• NiCad battery 

Use vn+1 and vn  to find the acceleration 

Using a and v, calculate Fte and Pte 

Calculate the motor power 

Calculate motor angular speed and toque 

Find the motor efficiency 

Find the power into the motor 

Add the average accessory power 
Pac to give the total value of battery 

Find the battery current 

Start 

_ _ /mot in mot out motP P η=
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_ _ /mot in mot out motP P η=

_bat mot in acP P P= +

2 4
2

E E RPI
R

− −
=

Use vn+1 and vn  to find the acceleration 

Using a and v, calculate Fte and Pte 

Calculate the motor power 

Calculate motor angular speed and toque 

Find the motor efficiency 

Find the power into the motor 

Add the average accessory power 
Pac to give the total value of battery 

Find the battery current 

Update DoD 

1 [ ]
3600n n
t ICS CS Ahδ

+

×
= +

Charge removed 
from the plates 
of battery 

1 [ ]
3600

k

n n
t ICR CR Ahδ

+

×
= +

Total charge 
actually supplied 
by the battery to 
the vehicle’s 
electrics 

Obs.: This difference is caused by self-discharge 
reactions taking place within the battery. 

n
n

p

CSDoD
C

=

Start 

Peukert Capacity 
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Use vn+1 and vn  to find the acceleration 

Using a and v, calculate Fte and Pte 

Calculate the motor power 

Calculate motor angular speed and toque 

Find the motor efficiency 

Find the power into the motor 

Add the average accessory power 
Pac to give the total value of battery 

Find the battery current 

Update DoD 

End of cycle? 

Battery 
discharged? 

N 

Y 

Y STOP 

Update end of 
cycle values and do 

another cycle 

N 

Start 
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Electric vehicle range modelling 
Results obtained from the simulation:  
 
•     Distance travelled 
•     Vehicle acceleration 
•     Tractive effort 
•     Motor power 
•     Motor torque 
•     Motor angular speed 
•     Motor efficiency 
•     Current out of (or into) the battery 

MATLAB: GM_EV1_Range.m 
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Electric vehicle range modelling 
Results obtained from the simulation:  
 
•     Distance travelled 
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Electric vehicle range modelling 
Results obtained from the simulation:  
 
•     Vehicle acceleration 
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Electric vehicle range modelling 
Results obtained from the simulation:  
 
•     Tractive effort 
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Electric vehicle range modelling 
Results obtained from the simulation:  
 
•     Power into the motor 
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Electric vehicle range modelling 
Results obtained from the simulation:  
 
•     Motor torque 
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Electric vehicle range modelling 
Results obtained from the simulation:  
 
•     Motor speed 
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Electric vehicle range modelling 
Results obtained from the simulation:  
 
•     Motor efficiency 
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Electric vehicle range modelling 
Results obtained from the simulation:  
 
•     Current into motor and controllers 
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Electric vehicle range modelling 

•     Torque vs speed (Scooter) 



INEP 318 

Electric vehicle modelling 
Final considerations 
 
 
Other aspects might also be considered, for instance: 
 
•     Better batteries models 
•     Driving cycles using hill climbing forces 
•     Vehicle aerodynamics  
•     Rolling resistances  
•     Transmissions efficiency  and others systems (in-wheel motors) 
•     Different converter types 
•     Other power trains (series, parallel, hybrid, etc) 
•     Carbon emission comparison between EVs 
•     Hybrid vehicle with intelligent systems  
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